MiniLlamaTest / README.md
ethensanchez's picture
Upload folder using huggingface_hub
a9e7d23 verified
metadata
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
tags:
  - generated_from_trainer
model-index:
  - name: qlora-out
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

adapter: null
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- path: utrgvseniorproject/medtext
  type: completion
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: null
lora_dropout: null
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: null
lora_target_linear: null
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 1
model_type: LlamaForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./qlora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: null
sequence_len: 1096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: utrgvmedai
wandb_log_model: true
wandb_name: testingTiny
wandb_project: TinyLlamaLLMTest
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

qlora-out

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.0 1.02 810 nan
0.0 1.98 1594 nan

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.0