|
--- |
|
tags: |
|
- espnet |
|
- audio |
|
- speaker-recognition |
|
language: multilingual |
|
datasets: |
|
- voxblink |
|
license: cc-by-4.0 |
|
--- |
|
|
|
## ESPnet2 SPK model |
|
|
|
### `espnet/voxblinkfull_rawnet3` |
|
|
|
This model was trained by Jungjee using voxblink recipe in [espnet](https://github.com/espnet/espnet/). |
|
|
|
### Demo: How to use in ESPnet2 |
|
|
|
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) |
|
if you haven't done that already. |
|
|
|
```bash |
|
cd espnet |
|
git checkout c9d55ca7ba378f5b22066f1cf9673cd53f7f65d8 |
|
pip install -e . |
|
cd egs2/voxblink/spk1 |
|
./run.sh --skip_data_prep false --skip_train true --download_model espnet/voxblinkfull_rawnet3 |
|
``` |
|
|
|
<!-- Generated by scripts/utils/show_spk_result.py --> |
|
# RESULTS |
|
## Environments |
|
date: 2024-01-01 15:33:11.809307 |
|
|
|
- python version: 3.9.16 (main, May 15 2023, 23:46:34) [GCC 11.2.0] |
|
- espnet version: 202310 |
|
- pytorch version: 1.13.1 |
|
|
|
| | Mean | Std | |
|
|---|---|---| |
|
| Target | 5.1178 | 4.7160 | |
|
| Non-target | 2.5179 | 2.5179 | |
|
|
|
| Model name | EER(%) | minDCF | |
|
|---|---|---| |
|
| conf/train_rawnet3 | 2.680 | 0.18937 | |
|
|
|
## SPK config |
|
|
|
<details><summary>expand</summary> |
|
|
|
``` |
|
config: conf/train_rawnet3.yaml |
|
print_config: false |
|
log_level: INFO |
|
drop_last_iter: true |
|
dry_run: false |
|
iterator_type: category |
|
valid_iterator_type: sequence |
|
output_dir: exp/spk_train_rawnet3_raw_sp |
|
ngpu: 1 |
|
seed: 0 |
|
num_workers: 6 |
|
num_att_plot: 0 |
|
dist_backend: nccl |
|
dist_init_method: env:// |
|
dist_world_size: 4 |
|
dist_rank: 0 |
|
local_rank: 0 |
|
dist_master_addr: localhost |
|
dist_master_port: 40409 |
|
dist_launcher: null |
|
multiprocessing_distributed: true |
|
unused_parameters: false |
|
sharded_ddp: false |
|
cudnn_enabled: true |
|
cudnn_benchmark: true |
|
cudnn_deterministic: false |
|
collect_stats: false |
|
write_collected_feats: false |
|
max_epoch: 40 |
|
patience: null |
|
val_scheduler_criterion: |
|
- valid |
|
- loss |
|
early_stopping_criterion: |
|
- valid |
|
- loss |
|
- min |
|
best_model_criterion: |
|
- - valid |
|
- eer |
|
- min |
|
keep_nbest_models: 3 |
|
nbest_averaging_interval: 0 |
|
grad_clip: 9999 |
|
grad_clip_type: 2.0 |
|
grad_noise: false |
|
accum_grad: 1 |
|
no_forward_run: false |
|
resume: true |
|
train_dtype: float32 |
|
use_amp: true |
|
log_interval: 100 |
|
use_matplotlib: true |
|
use_tensorboard: true |
|
create_graph_in_tensorboard: false |
|
use_wandb: false |
|
wandb_project: null |
|
wandb_id: null |
|
wandb_entity: null |
|
wandb_name: null |
|
wandb_model_log_interval: -1 |
|
detect_anomaly: false |
|
use_lora: false |
|
save_lora_only: true |
|
lora_conf: {} |
|
pretrain_path: null |
|
init_param: [] |
|
ignore_init_mismatch: false |
|
freeze_param: [] |
|
num_iters_per_epoch: null |
|
batch_size: 512 |
|
valid_batch_size: 40 |
|
batch_bins: 1000000 |
|
valid_batch_bins: null |
|
train_shape_file: |
|
- exp/spk_stats_16k_sp/train/speech_shape |
|
valid_shape_file: |
|
- exp/spk_stats_16k_sp/valid/speech_shape |
|
batch_type: folded |
|
valid_batch_type: null |
|
fold_length: |
|
- 120000 |
|
sort_in_batch: descending |
|
shuffle_within_batch: false |
|
sort_batch: descending |
|
multiple_iterator: false |
|
chunk_length: 500 |
|
chunk_shift_ratio: 0.5 |
|
num_cache_chunks: 1024 |
|
chunk_excluded_key_prefixes: [] |
|
chunk_default_fs: null |
|
train_data_path_and_name_and_type: |
|
- - dump/raw/voxblink_full_sp/wav.scp |
|
- speech |
|
- sound |
|
- - dump/raw/voxblink_full_sp/utt2spk |
|
- spk_labels |
|
- text |
|
valid_data_path_and_name_and_type: |
|
- - dump/raw/voxceleb1_test/trial.scp |
|
- speech |
|
- sound |
|
- - dump/raw/voxceleb1_test/trial2.scp |
|
- speech2 |
|
- sound |
|
- - dump/raw/voxceleb1_test/trial_label |
|
- spk_labels |
|
- text |
|
allow_variable_data_keys: false |
|
max_cache_size: 0.0 |
|
max_cache_fd: 32 |
|
allow_multi_rates: false |
|
valid_max_cache_size: null |
|
exclude_weight_decay: false |
|
exclude_weight_decay_conf: {} |
|
optim: adam |
|
optim_conf: |
|
lr: 0.001 |
|
weight_decay: 5.0e-05 |
|
amsgrad: false |
|
scheduler: cosineannealingwarmuprestarts |
|
scheduler_conf: |
|
first_cycle_steps: 84560 |
|
cycle_mult: 1.0 |
|
max_lr: 0.001 |
|
min_lr: 5.0e-06 |
|
warmup_steps: 1000 |
|
gamma: 0.75 |
|
init: null |
|
use_preprocessor: true |
|
input_size: null |
|
target_duration: 3.0 |
|
spk2utt: dump/raw/voxblink_full_sp/spk2utt |
|
spk_num: 114201 |
|
sample_rate: 16000 |
|
num_eval: 10 |
|
rir_scp: '' |
|
model_conf: |
|
extract_feats_in_collect_stats: false |
|
frontend: asteroid_frontend |
|
frontend_conf: |
|
sinc_stride: 16 |
|
sinc_kernel_size: 251 |
|
sinc_filters: 256 |
|
preemph_coef: 0.97 |
|
log_term: 1.0e-06 |
|
specaug: null |
|
specaug_conf: {} |
|
normalize: null |
|
normalize_conf: {} |
|
encoder: rawnet3 |
|
encoder_conf: |
|
model_scale: 8 |
|
ndim: 1024 |
|
output_size: 1536 |
|
pooling: chn_attn_stat |
|
pooling_conf: {} |
|
projector: rawnet3 |
|
projector_conf: |
|
output_size: 192 |
|
preprocessor: spk |
|
preprocessor_conf: |
|
target_duration: 3.0 |
|
sample_rate: 16000 |
|
num_eval: 5 |
|
noise_apply_prob: 0.5 |
|
noise_info: |
|
- - 1.0 |
|
- dump/raw/musan_speech.scp |
|
- - 4 |
|
- 7 |
|
- - 13 |
|
- 20 |
|
- - 1.0 |
|
- dump/raw/musan_noise.scp |
|
- - 1 |
|
- 1 |
|
- - 0 |
|
- 15 |
|
- - 1.0 |
|
- dump/raw/musan_music.scp |
|
- - 1 |
|
- 1 |
|
- - 5 |
|
- 15 |
|
rir_apply_prob: 0.5 |
|
rir_scp: dump/raw/rirs.scp |
|
loss: aamsoftmax_sc_topk |
|
loss_conf: |
|
margin: 0.3 |
|
scale: 30 |
|
K: 3 |
|
mp: 0.06 |
|
k_top: 5 |
|
required: |
|
- output_dir |
|
version: '202310' |
|
distributed: true |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
### Citing ESPnet |
|
|
|
```BibTex |
|
@inproceedings{watanabe2018espnet, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
title={{ESPnet}: End-to-End Speech Processing Toolkit}, |
|
year={2018}, |
|
booktitle={Proceedings of Interspeech}, |
|
pages={2207--2211}, |
|
doi={10.21437/Interspeech.2018-1456}, |
|
url={http://dx.doi.org/10.21437/Interspeech.2018-1456} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
``` |
|
|
|
or arXiv: |
|
|
|
```bibtex |
|
@misc{watanabe2018espnet, |
|
title={ESPnet: End-to-End Speech Processing Toolkit}, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
year={2018}, |
|
eprint={1804.00015}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|