See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- da89d6d0d6c47035_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/da89d6d0d6c47035_train_data.json
type:
field_input: v1_rejected
field_instruction: prompt
field_output: ground_truth_chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16:
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/9bbe02f2-64a5-465f-bf4c-4ea2695fbef3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
mlflow_experiment_name: /tmp/da89d6d0d6c47035_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 768
max_steps: 100
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a9d1d646-8ba4-40a6-8b74-692cf970db39
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a9d1d646-8ba4-40a6-8b74-692cf970db39
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
special_tokens:
pad_token: <|end_of_text|>
9bbe02f2-64a5-465f-bf4c-4ea2695fbef3
This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2094
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3023 | 0.0005 | 1 | 1.6697 |
1.848 | 0.0037 | 7 | 1.5881 |
1.3956 | 0.0075 | 14 | 1.3877 |
1.2391 | 0.0112 | 21 | 1.3272 |
1.497 | 0.0149 | 28 | 1.2778 |
1.4533 | 0.0187 | 35 | 1.2552 |
1.2165 | 0.0224 | 42 | 1.2408 |
1.1767 | 0.0262 | 49 | 1.2297 |
0.9731 | 0.0299 | 56 | 1.2223 |
0.8316 | 0.0336 | 63 | 1.2189 |
1.3272 | 0.0374 | 70 | 1.2140 |
1.1467 | 0.0411 | 77 | 1.2112 |
1.2043 | 0.0448 | 84 | 1.2099 |
1.3629 | 0.0486 | 91 | 1.2091 |
1.2862 | 0.0523 | 98 | 1.2094 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for error577/9bbe02f2-64a5-465f-bf4c-4ea2695fbef3
Base model
meta-llama/Llama-3.2-1B-Instruct
Finetuned
unsloth/Llama-3.2-1B-Instruct