whisper-medium-mn / README.md
Erkhembayar Gantulga
Updated README
1899cc9
|
raw
history blame
4.03 kB
metadata
language:
  - mn
base_model: openai/whisper-medium
library_name: transformers
datasets:
  - mozilla-foundation/common_voice_17_0
  - google/fleurs
tags:
  - audio
  - automatic-speech-recognition
widget:
  - example_title: Common Voice sample 1
    src: sample1.flac
  - example_title: Common Voice sample 2
    src: sample2.flac
model-index:
  - name: whisper-medium-mn
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: common_voice_17_0
          config: mn
          split: test
          args:
            language: mn
        metrics:
          - name: Test WER
            type: wer
            value: 12.958
pipeline_tag: automatic-speech-recognition
license: apache-2.0

Whisper Medium Mn - Erkhembayar Gantulga

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 and Google Fleurs datasets. It achieves the following results on the evaluation set:

  • Loss: 0.1083
  • Wer: 12.9580

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Datasets used for training:

For training, combined Common Voice 17.0 and Google Fleurs datasets:

from datasets import load_dataset, DatasetDict, concatenate_datasets
from datasets import Audio

common_voice = DatasetDict()

common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="train+validation+validated", use_auth_token=True)
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="test", use_auth_token=True)

common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))

common_voice = common_voice.remove_columns(
    ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes", "variant"]
)

google_fleurs = DatasetDict()

google_fleurs["train"] = load_dataset("google/fleurs", "mn_mn", split="train+validation", use_auth_token=True)
google_fleurs["test"] = load_dataset("google/fleurs", "mn_mn", split="test", use_auth_token=True)

google_fleurs = google_fleurs.remove_columns(
    ["id", "num_samples", "path", "raw_transcription", "gender", "lang_id", "language", "lang_group_id"]
)
google_fleurs = google_fleurs.rename_column("transcription", "sentence")

dataset = DatasetDict()
dataset["train"] = concatenate_datasets([common_voice["train"], google_fleurs["train"]])
dataset["test"] = concatenate_datasets([common_voice["test"], google_fleurs["test"]])

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2986 0.4912 500 0.3557 40.1515
0.2012 0.9823 1000 0.2310 28.3512
0.099 1.4735 1500 0.1864 23.4453
0.0733 1.9646 2000 0.1405 18.3024
0.0231 2.4558 2500 0.1308 16.5645
0.0191 2.9470 3000 0.1155 14.5569
0.0059 3.4381 3500 0.1122 13.4728
0.006 3.9293 4000 0.1083 12.9580

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1