enochlev commited on
Commit
151cba4
·
verified ·
1 Parent(s): 9907a4d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7960
8
+ - loss:CoSENTLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: And your phone. Okay do you already have a phone in mind, what
12
+ you wanted to upgrade to.
13
+ sentences:
14
+ - I'm now going to read out some terms and conditions to complete the order.
15
+ - The same discounts you can have been added as an additional line and do into your
16
+ account. It needs be entitled to % discount off of the costs.
17
+ - Thank you and could you please confirm to me what is your full name.
18
+ - source_sentence: 'So glad you''re on the right plan. I will also check your average
19
+ monthly usage for the past few months. Your usage is only ## gig of mobile data
20
+ and then the highest one, it''s around ##. Gig of mobile details. So definitely
21
+ the ## gig of mobile data will if broken.'
22
+ sentences:
23
+ - Thank you for calling over to my name is how can I help you.
24
+ - So the phone that you currently have is that currently a Samsung?
25
+ - So on that's something that you can they get that the shop and it's at a renewal
26
+ for our insurance. So just in case like once you get back to the UK and you don't
27
+ want to have the insurance anymore. You can possibly remove that. That and the
28
+ full garbage insurance.
29
+ - source_sentence: Okay, well, I just want to share with you that I'm happy to advise
30
+ that you have an amazing offer on our secondary ninth. So there any family members
31
+ like to join or to under your name with a same billing address so they will be
32
+ getting a 20% desk.
33
+ sentences:
34
+ - Yes, that's correct for know. Our price is £ and then it won't go down to £ after
35
+ you apply the discount.
36
+ - Thank you for calling over to my name is how can I help you.
37
+ - Checking your account I can see you are on the and you have been paying £ per
38
+ month. Is that correct?
39
+ - source_sentence: 'I just read to process this I just like to open your account here
40
+ to see if we can get this eligible for your upgrade for the new iPhone ## so here.'
41
+ sentences:
42
+ - I now need to read some insurance disclosures related to the Ultimate Plan you
43
+ have chosen.
44
+ - Thank you and could you please confirm to me what is your full name.
45
+ - I can provide to you . Are you happy to go ahead with this?
46
+ - source_sentence: Okay, and can you provide me your full name please.
47
+ sentences:
48
+ - So on that's something that you can they get that the shop and it's at a renewal
49
+ for our insurance. So just in case like once you get back to the UK and you don't
50
+ want to have the insurance anymore. You can possibly remove that. That and the
51
+ full garbage insurance.
52
+ - You. Okay, so for this one, how do you how do you normally use your mobile data.
53
+ - You. Okay, so for this one, how do you how do you normally use your mobile data.
54
+ pipeline_tag: sentence-similarity
55
+ library_name: sentence-transformers
56
+ metrics:
57
+ - pearson_cosine
58
+ - spearman_cosine
59
+ - pearson_manhattan
60
+ - spearman_manhattan
61
+ - pearson_euclidean
62
+ - spearman_euclidean
63
+ - pearson_dot
64
+ - spearman_dot
65
+ - pearson_max
66
+ - spearman_max
67
+ model-index:
68
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
69
+ results:
70
+ - task:
71
+ type: semantic-similarity
72
+ name: Semantic Similarity
73
+ dataset:
74
+ name: sts dev
75
+ type: sts_dev
76
+ metrics:
77
+ - type: pearson_cosine
78
+ value: 0.5177189921265649
79
+ name: Pearson Cosine
80
+ - type: spearman_cosine
81
+ value: 0.2603983787734805
82
+ name: Spearman Cosine
83
+ - type: pearson_manhattan
84
+ value: 0.5608459921843345
85
+ name: Pearson Manhattan
86
+ - type: spearman_manhattan
87
+ value: 0.2595766499932607
88
+ name: Spearman Manhattan
89
+ - type: pearson_euclidean
90
+ value: 0.5641188480826617
91
+ name: Pearson Euclidean
92
+ - type: spearman_euclidean
93
+ value: 0.26039837957858836
94
+ name: Spearman Euclidean
95
+ - type: pearson_dot
96
+ value: 0.5177189925954635
97
+ name: Pearson Dot
98
+ - type: spearman_dot
99
+ value: 0.26040366240168195
100
+ name: Spearman Dot
101
+ - type: pearson_max
102
+ value: 0.5641188480826617
103
+ name: Pearson Max
104
+ - type: spearman_max
105
+ value: 0.26040366240168195
106
+ name: Spearman Max
107
+ - type: pearson_cosine
108
+ value: 0.4585915541798693
109
+ name: Pearson Cosine
110
+ - type: spearman_cosine
111
+ value: 0.24734582807664446
112
+ name: Spearman Cosine
113
+ - type: pearson_manhattan
114
+ value: 0.5059296028724503
115
+ name: Pearson Manhattan
116
+ - type: spearman_manhattan
117
+ value: 0.2466879170820096
118
+ name: Spearman Manhattan
119
+ - type: pearson_euclidean
120
+ value: 0.506069567328991
121
+ name: Pearson Euclidean
122
+ - type: spearman_euclidean
123
+ value: 0.24734582912817787
124
+ name: Spearman Euclidean
125
+ - type: pearson_dot
126
+ value: 0.4585915495841867
127
+ name: Pearson Dot
128
+ - type: spearman_dot
129
+ value: 0.24734582759867477
130
+ name: Spearman Dot
131
+ - type: pearson_max
132
+ value: 0.506069567328991
133
+ name: Pearson Max
134
+ - type: spearman_max
135
+ value: 0.24734582912817787
136
+ name: Spearman Max
137
+ ---
138
+
139
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
140
+
141
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
142
+
143
+ ## Model Details
144
+
145
+ ### Model Description
146
+ - **Model Type:** Sentence Transformer
147
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
148
+ - **Maximum Sequence Length:** 256 tokens
149
+ - **Output Dimensionality:** 384 tokens
150
+ - **Similarity Function:** Cosine Similarity
151
+ <!-- - **Training Dataset:** Unknown -->
152
+ <!-- - **Language:** Unknown -->
153
+ <!-- - **License:** Unknown -->
154
+
155
+ ### Model Sources
156
+
157
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
158
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
159
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
160
+
161
+ ### Full Model Architecture
162
+
163
+ ```
164
+ SentenceTransformer(
165
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
166
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
167
+ (2): Normalize()
168
+ )
169
+ ```
170
+
171
+ ## Usage
172
+
173
+ ### Direct Usage (Sentence Transformers)
174
+
175
+ First install the Sentence Transformers library:
176
+
177
+ ```bash
178
+ pip install -U sentence-transformers
179
+ ```
180
+
181
+ Then you can load this model and run inference.
182
+ ```python
183
+ from sentence_transformers import SentenceTransformer
184
+
185
+ # Download from the 🤗 Hub
186
+ model = SentenceTransformer("enochlev/xlm-similarity")
187
+ # Run inference
188
+ sentences = [
189
+ 'Okay, and can you provide me your full name please.',
190
+ 'You. Okay, so for this one, how do you how do you normally use your mobile data.',
191
+ 'You. Okay, so for this one, how do you how do you normally use your mobile data.',
192
+ ]
193
+ embeddings = model.encode(sentences)
194
+ print(embeddings.shape)
195
+ # [3, 384]
196
+
197
+ # Get the similarity scores for the embeddings
198
+ similarities = model.similarity(embeddings, embeddings)
199
+ print(similarities.shape)
200
+ # [3, 3]
201
+ ```
202
+
203
+ <!--
204
+ ### Direct Usage (Transformers)
205
+
206
+ <details><summary>Click to see the direct usage in Transformers</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Downstream Usage (Sentence Transformers)
213
+
214
+ You can finetune this model on your own dataset.
215
+
216
+ <details><summary>Click to expand</summary>
217
+
218
+ </details>
219
+ -->
220
+
221
+ <!--
222
+ ### Out-of-Scope Use
223
+
224
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
225
+ -->
226
+
227
+ ## Evaluation
228
+
229
+ ### Metrics
230
+
231
+ #### Semantic Similarity
232
+ * Dataset: `sts_dev`
233
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
234
+
235
+ | Metric | Value |
236
+ |:-------------------|:-----------|
237
+ | pearson_cosine | 0.5177 |
238
+ | spearman_cosine | 0.2604 |
239
+ | pearson_manhattan | 0.5608 |
240
+ | spearman_manhattan | 0.2596 |
241
+ | pearson_euclidean | 0.5641 |
242
+ | spearman_euclidean | 0.2604 |
243
+ | pearson_dot | 0.5177 |
244
+ | spearman_dot | 0.2604 |
245
+ | pearson_max | 0.5641 |
246
+ | **spearman_max** | **0.2604** |
247
+
248
+ #### Semantic Similarity
249
+ * Dataset: `sts_dev`
250
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
251
+
252
+ | Metric | Value |
253
+ |:-------------------|:-----------|
254
+ | pearson_cosine | 0.4586 |
255
+ | spearman_cosine | 0.2473 |
256
+ | pearson_manhattan | 0.5059 |
257
+ | spearman_manhattan | 0.2467 |
258
+ | pearson_euclidean | 0.5061 |
259
+ | spearman_euclidean | 0.2473 |
260
+ | pearson_dot | 0.4586 |
261
+ | spearman_dot | 0.2473 |
262
+ | pearson_max | 0.5061 |
263
+ | **spearman_max** | **0.2473** |
264
+
265
+ <!--
266
+ ## Bias, Risks and Limitations
267
+
268
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
269
+ -->
270
+
271
+ <!--
272
+ ### Recommendations
273
+
274
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
275
+ -->
276
+
277
+ ## Training Details
278
+
279
+ ### Training Dataset
280
+
281
+ #### Unnamed Dataset
282
+
283
+
284
+ * Size: 7,960 training samples
285
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
286
+ * Approximate statistics based on the first 1000 samples:
287
+ | | text1 | text2 | label |
288
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
289
+ | type | string | string | float |
290
+ | details | <ul><li>min: 5 tokens</li><li>mean: 21.6 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
291
+ * Samples:
292
+ | text1 | text2 | label |
293
+ |:---------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
294
+ | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>Thank you for calling over to my name is how can I help you.</code> | <code>1.0</code> |
295
+ | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>So, I'd look into our accessory so for the airbags the one that we have an ongoing promotion right now for the accessories is the airport second generation. So you can. And either by there's like a great if you want to or I can also make it as an instalment for you. If you want to.</code> | <code>0.2</code> |
296
+ | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>So on that's something that you can they get that the shop and it's at a renewal for our insurance. So just in case like once you get back to the UK and you don't want to have the insurance anymore. You can possibly remove that. That and the full garbage insurance.</code> | <code>0.2</code> |
297
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
298
+ ```json
299
+ {
300
+ "scale": 20.0,
301
+ "similarity_fct": "pairwise_cos_sim"
302
+ }
303
+ ```
304
+
305
+ ### Evaluation Dataset
306
+
307
+ #### Unnamed Dataset
308
+
309
+
310
+ * Size: 1,980 evaluation samples
311
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
312
+ * Approximate statistics based on the first 1000 samples:
313
+ | | text1 | text2 | label |
314
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
315
+ | type | string | string | float |
316
+ | details | <ul><li>min: 7 tokens</li><li>mean: 39.04 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
317
+ * Samples:
318
+ | text1 | text2 | label |
319
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
320
+ | <code>Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.</code> | <code>Are you planning to get a new sim only plan or a new phone?</code> | <code>1.0</code> |
321
+ | <code>Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.</code> | <code>So, I'd look into our accessory so for the airbags the one that we have an ongoing promotion right now for the accessories is the airport second generation. So you can. And either by there's like a great if you want to or I can also make it as an instalment for you. If you want to.</code> | <code>0.2</code> |
322
+ | <code>Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.</code> | <code>So on that's something that you can they get that the shop and it's at a renewal for our insurance. So just in case like once you get back to the UK and you don't want to have the insurance anymore. You can possibly remove that. That and the full garbage insurance.</code> | <code>0.2</code> |
323
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
324
+ ```json
325
+ {
326
+ "scale": 20.0,
327
+ "similarity_fct": "pairwise_cos_sim"
328
+ }
329
+ ```
330
+
331
+ ### Training Hyperparameters
332
+ #### Non-Default Hyperparameters
333
+
334
+ - `eval_strategy`: epoch
335
+ - `per_device_train_batch_size`: 256
336
+ - `per_device_eval_batch_size`: 256
337
+ - `num_train_epochs`: 1
338
+ - `warmup_ratio`: 0.1
339
+ - `batch_sampler`: no_duplicates
340
+
341
+ #### All Hyperparameters
342
+ <details><summary>Click to expand</summary>
343
+
344
+ - `overwrite_output_dir`: False
345
+ - `do_predict`: False
346
+ - `eval_strategy`: epoch
347
+ - `prediction_loss_only`: True
348
+ - `per_device_train_batch_size`: 256
349
+ - `per_device_eval_batch_size`: 256
350
+ - `per_gpu_train_batch_size`: None
351
+ - `per_gpu_eval_batch_size`: None
352
+ - `gradient_accumulation_steps`: 1
353
+ - `eval_accumulation_steps`: None
354
+ - `torch_empty_cache_steps`: None
355
+ - `learning_rate`: 5e-05
356
+ - `weight_decay`: 0.0
357
+ - `adam_beta1`: 0.9
358
+ - `adam_beta2`: 0.999
359
+ - `adam_epsilon`: 1e-08
360
+ - `max_grad_norm`: 1.0
361
+ - `num_train_epochs`: 1
362
+ - `max_steps`: -1
363
+ - `lr_scheduler_type`: linear
364
+ - `lr_scheduler_kwargs`: {}
365
+ - `warmup_ratio`: 0.1
366
+ - `warmup_steps`: 0
367
+ - `log_level`: passive
368
+ - `log_level_replica`: warning
369
+ - `log_on_each_node`: True
370
+ - `logging_nan_inf_filter`: True
371
+ - `save_safetensors`: True
372
+ - `save_on_each_node`: False
373
+ - `save_only_model`: False
374
+ - `restore_callback_states_from_checkpoint`: False
375
+ - `no_cuda`: False
376
+ - `use_cpu`: False
377
+ - `use_mps_device`: False
378
+ - `seed`: 42
379
+ - `data_seed`: None
380
+ - `jit_mode_eval`: False
381
+ - `use_ipex`: False
382
+ - `bf16`: False
383
+ - `fp16`: False
384
+ - `fp16_opt_level`: O1
385
+ - `half_precision_backend`: auto
386
+ - `bf16_full_eval`: False
387
+ - `fp16_full_eval`: False
388
+ - `tf32`: None
389
+ - `local_rank`: 0
390
+ - `ddp_backend`: None
391
+ - `tpu_num_cores`: None
392
+ - `tpu_metrics_debug`: False
393
+ - `debug`: []
394
+ - `dataloader_drop_last`: False
395
+ - `dataloader_num_workers`: 0
396
+ - `dataloader_prefetch_factor`: None
397
+ - `past_index`: -1
398
+ - `disable_tqdm`: False
399
+ - `remove_unused_columns`: True
400
+ - `label_names`: None
401
+ - `load_best_model_at_end`: False
402
+ - `ignore_data_skip`: False
403
+ - `fsdp`: []
404
+ - `fsdp_min_num_params`: 0
405
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
406
+ - `fsdp_transformer_layer_cls_to_wrap`: None
407
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
408
+ - `deepspeed`: None
409
+ - `label_smoothing_factor`: 0.0
410
+ - `optim`: adamw_torch
411
+ - `optim_args`: None
412
+ - `adafactor`: False
413
+ - `group_by_length`: False
414
+ - `length_column_name`: length
415
+ - `ddp_find_unused_parameters`: None
416
+ - `ddp_bucket_cap_mb`: None
417
+ - `ddp_broadcast_buffers`: False
418
+ - `dataloader_pin_memory`: True
419
+ - `dataloader_persistent_workers`: False
420
+ - `skip_memory_metrics`: True
421
+ - `use_legacy_prediction_loop`: False
422
+ - `push_to_hub`: False
423
+ - `resume_from_checkpoint`: None
424
+ - `hub_model_id`: None
425
+ - `hub_strategy`: every_save
426
+ - `hub_private_repo`: False
427
+ - `hub_always_push`: False
428
+ - `gradient_checkpointing`: False
429
+ - `gradient_checkpointing_kwargs`: None
430
+ - `include_inputs_for_metrics`: False
431
+ - `eval_do_concat_batches`: True
432
+ - `fp16_backend`: auto
433
+ - `push_to_hub_model_id`: None
434
+ - `push_to_hub_organization`: None
435
+ - `mp_parameters`:
436
+ - `auto_find_batch_size`: False
437
+ - `full_determinism`: False
438
+ - `torchdynamo`: None
439
+ - `ray_scope`: last
440
+ - `ddp_timeout`: 1800
441
+ - `torch_compile`: False
442
+ - `torch_compile_backend`: None
443
+ - `torch_compile_mode`: None
444
+ - `dispatch_batches`: None
445
+ - `split_batches`: None
446
+ - `include_tokens_per_second`: False
447
+ - `include_num_input_tokens_seen`: False
448
+ - `neftune_noise_alpha`: None
449
+ - `optim_target_modules`: None
450
+ - `batch_eval_metrics`: False
451
+ - `eval_on_start`: False
452
+ - `use_liger_kernel`: False
453
+ - `eval_use_gather_object`: False
454
+ - `batch_sampler`: no_duplicates
455
+ - `multi_dataset_batch_sampler`: proportional
456
+
457
+ </details>
458
+
459
+ ### Training Logs
460
+ | Epoch | Step | Validation Loss | sts_dev_spearman_max |
461
+ |:-----:|:----:|:---------------:|:--------------------:|
462
+ | 4.0 | 128 | 0.4041 | 0.2604 |
463
+ | 1.0 | 32 | 0.6357 | 0.2473 |
464
+
465
+
466
+ ### Framework Versions
467
+ - Python: 3.11.9
468
+ - Sentence Transformers: 3.2.1
469
+ - Transformers: 4.45.2
470
+ - PyTorch: 2.5.1+cu124
471
+ - Accelerate: 1.1.1
472
+ - Datasets: 3.1.0
473
+ - Tokenizers: 0.20.1
474
+
475
+ ## Citation
476
+
477
+ ### BibTeX
478
+
479
+ #### Sentence Transformers
480
+ ```bibtex
481
+ @inproceedings{reimers-2019-sentence-bert,
482
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
483
+ author = "Reimers, Nils and Gurevych, Iryna",
484
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
485
+ month = "11",
486
+ year = "2019",
487
+ publisher = "Association for Computational Linguistics",
488
+ url = "https://arxiv.org/abs/1908.10084",
489
+ }
490
+ ```
491
+
492
+ #### CoSENTLoss
493
+ ```bibtex
494
+ @online{kexuefm-8847,
495
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
496
+ author={Su Jianlin},
497
+ year={2022},
498
+ month={Jan},
499
+ url={https://kexue.fm/archives/8847},
500
+ }
501
+ ```
502
+
503
+ <!--
504
+ ## Glossary
505
+
506
+ *Clearly define terms in order to be accessible across audiences.*
507
+ -->
508
+
509
+ <!--
510
+ ## Model Card Authors
511
+
512
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
513
+ -->
514
+
515
+ <!--
516
+ ## Model Card Contact
517
+
518
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
519
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec473adf01c21c28c3cd12f0480713a687135de5b9956a23b4992ea20ed5d235
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff