SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("enochlev/xlm-similarity")
# Run inference
sentences = [
'Okay, and can you provide me your full name please.',
'You. Okay, so for this one, how do you how do you normally use your mobile data.',
'You. Okay, so for this one, how do you how do you normally use your mobile data.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5177 |
spearman_cosine | 0.2604 |
pearson_manhattan | 0.5608 |
spearman_manhattan | 0.2596 |
pearson_euclidean | 0.5641 |
spearman_euclidean | 0.2604 |
pearson_dot | 0.5177 |
spearman_dot | 0.2604 |
pearson_max | 0.5641 |
spearman_max | 0.2604 |
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4586 |
spearman_cosine | 0.2473 |
pearson_manhattan | 0.5059 |
spearman_manhattan | 0.2467 |
pearson_euclidean | 0.5061 |
spearman_euclidean | 0.2473 |
pearson_dot | 0.4586 |
spearman_dot | 0.2473 |
pearson_max | 0.5061 |
spearman_max | 0.2473 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,960 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 5 tokens
- mean: 21.6 tokens
- max: 66 tokens
- min: 13 tokens
- mean: 28.35 tokens
- max: 71 tokens
- min: 0.2
- mean: 0.22
- max: 1.0
- Samples:
text1 text2 label Hello, welcome to O2. My name is __ How can I help you today?
Thank you for calling over to my name is how can I help you.
1.0
Hello, welcome to O2. My name is __ How can I help you today?
So, I'd look into our accessory so for the airbags the one that we have an ongoing promotion right now for the accessories is the airport second generation. So you can. And either by there's like a great if you want to or I can also make it as an instalment for you. If you want to.
0.2
Hello, welcome to O2. My name is __ How can I help you today?
So on that's something that you can they get that the shop and it's at a renewal for our insurance. So just in case like once you get back to the UK and you don't want to have the insurance anymore. You can possibly remove that. That and the full garbage insurance.
0.2
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,980 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 7 tokens
- mean: 39.04 tokens
- max: 256 tokens
- min: 13 tokens
- mean: 28.35 tokens
- max: 71 tokens
- min: 0.2
- mean: 0.22
- max: 1.0
- Samples:
text1 text2 label Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.
Are you planning to get a new sim only plan or a new phone?
1.0
Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.
So, I'd look into our accessory so for the airbags the one that we have an ongoing promotion right now for the accessories is the airport second generation. So you can. And either by there's like a great if you want to or I can also make it as an instalment for you. If you want to.
0.2
Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.
So on that's something that you can they get that the shop and it's at a renewal for our insurance. So just in case like once you get back to the UK and you don't want to have the insurance anymore. You can possibly remove that. That and the full garbage insurance.
0.2
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 256per_device_eval_batch_size
: 256num_train_epochs
: 1warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Validation Loss | sts_dev_spearman_max |
---|---|---|---|
4.0 | 128 | 0.4041 | 0.2604 |
1.0 | 32 | 0.6357 | 0.2473 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for enochlev/xlm-similarity
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on sts devself-reported0.518
- Spearman Cosine on sts devself-reported0.260
- Pearson Manhattan on sts devself-reported0.561
- Spearman Manhattan on sts devself-reported0.260
- Pearson Euclidean on sts devself-reported0.564
- Spearman Euclidean on sts devself-reported0.260
- Pearson Dot on sts devself-reported0.518
- Spearman Dot on sts devself-reported0.260
- Pearson Max on sts devself-reported0.564
- Spearman Max on sts devself-reported0.260