|
--- |
|
language: pl |
|
datasets: |
|
- enelpol/czywiesz |
|
--- |
|
|
|
# Model description |
|
|
|
The model was created for selective question answering in Polish. I.e. it is used to find passages containing the answers to the given question. |
|
|
|
It is used to encode the contexts (aka passages) in the DPR bi-encoder architecture. The architecture requires two separate models. |
|
The question part has to be encoded with the corresponding [question encoder](https://huggingface.co/enelpol/czywiesz-question). |
|
|
|
The model was created by fine-tuning [Herbert base cased](https://huggingface.co/allegro/herbert-base-cased) on "Czywiesz" dataset. |
|
[Czywiesz](https://clarin-pl.eu/dspace/handle/11321/39) dataset contains questions and Wikipedia articles extracted from the Polish Wikipedia. |
|
|
|
|
|
# Usage |
|
|
|
It is the easiest to use the model with the [Haystack framework](https://haystack.deepset.ai/overview/intro). |
|
|
|
```python |
|
from haystack.document_stores import FAISSDocumentStore |
|
from haystack.retriever import DensePassageRetriever |
|
|
|
document_store = FAISSDocumentStore(faiss_index_factory_str="Flat") |
|
|
|
retriever = DensePassageRetriever( |
|
document_store=document_store, |
|
query_embedding_model="enelpol/czywiesz-question", |
|
passage_embedding_model="enelpol/czywiesz-context" |
|
) |
|
|
|
for document in documents: |
|
document_store.write_documents([document]) |
|
|
|
document_store.update_embeddings(retriever) |
|
document_store.save("contexts.faiss") |
|
|
|
``` |