PEFT
Safetensors
French
eltorio's picture
Update README.md
dbba129 verified
|
raw
history blame
2.28 kB
metadata
license: agpl-3.0
language:
  - fr
base_model:
  - unsloth/Llama-3.2-3B-Instruct
datasets:
  - eltorio/appreciation

Une intelligence artificielle pour écrire des appréciations

Objectifs

Cette IA s'adresse aux enseignants de l'enseignement secondaire français pour les aider à rédiger automatiquement des appréciations pour leurs élèves.

Interface utilisateur

L'interface réalisée avec Gradio propose en entrée:

Informations générales

  • matière enseignée:
    • Histoire-Géographie
    • Histoire-Géographie-Géopolitique-Science-Politique (HGGSP)
    • (des matières seront ajoutées ultérieurement)
  • niveau de l'élève (2nde, 1ère, Terminale)
  • trimestre (1er, 2ème, 3ème)

Évaluation

  • note de l'élève sur 20
  • évolution par rapport au trimestre précédent (notes des 3 trimetres ou N/A si innaproprié)

Attitude et travail

  • travail personnel fourni: slider de 0 à 10
  • participation en classe: slider de 0 à 10
  • comportement: slider de 0 à 10

L'interface génère une appréciation de 1 à 20 mots adaptée au profil de l'élève. Cette évaluation reste bienveillante et permet à l'élève et à ses parents de comprendre les atouts et les difficultés, tout en proposant des pistes de progression.

Stratégie de développement

Phase 1 : MVP (Minimum Viable Product)

  • Utilisation d'un modèle LLM de taille moyenne (3B paramètres)
  • Création d'un dataset initial de ≈250 appréciations représentatives
  • Inclusion d'exemples réels anonymisés d'appréciations d'enseignants
  • Interface basique mais fonctionnelle
  • Système de feedback utilisateur

Phase 2 : Amélioration et validation

  • Extension du dataset à 1000+ exemples
  • Fine-tuning d'un modèle plus large
  • Validation par un panel d'enseignants
  • Métriques qualitatives (cohérence, personnalisation)
  • Amélioration continue basée sur les retours

Pipeline technique

  1. Prétraitement et normalisation des entrées
  2. Construction du contexte spécifique
  3. Génération de l'appréciation
  4. Post-traitement (vérification longueur/ton/grammaire)

Sécurité et éthique

  • Il est hors de question de mettre des appréciations automatiques, elles devront être validée et eventuellement corrigée par l'enseignant.