File size: 2,772 Bytes
bf80640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlnet-base-cased_fold_8_binary_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlnet-base-cased_fold_8_binary_v1

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5333
- F1: 0.8407

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 290  | 0.3866          | 0.8172 |
| 0.4299        | 2.0   | 580  | 0.4215          | 0.8246 |
| 0.4299        | 3.0   | 870  | 0.4765          | 0.8238 |
| 0.2564        | 4.0   | 1160 | 0.7283          | 0.8350 |
| 0.2564        | 5.0   | 1450 | 0.6825          | 0.8363 |
| 0.1553        | 6.0   | 1740 | 0.9637          | 0.8339 |
| 0.0893        | 7.0   | 2030 | 1.1392          | 0.8239 |
| 0.0893        | 8.0   | 2320 | 1.1868          | 0.8231 |
| 0.0538        | 9.0   | 2610 | 1.2180          | 0.8346 |
| 0.0538        | 10.0  | 2900 | 1.2353          | 0.8253 |
| 0.0386        | 11.0  | 3190 | 1.1883          | 0.8317 |
| 0.0386        | 12.0  | 3480 | 1.2786          | 0.8375 |
| 0.0289        | 13.0  | 3770 | 1.3725          | 0.8375 |
| 0.0146        | 14.0  | 4060 | 1.3171          | 0.8463 |
| 0.0146        | 15.0  | 4350 | 1.2323          | 0.8425 |
| 0.0182        | 16.0  | 4640 | 1.3169          | 0.8485 |
| 0.0182        | 17.0  | 4930 | 1.4424          | 0.8336 |
| 0.0125        | 18.0  | 5220 | 1.4336          | 0.8385 |
| 0.0102        | 19.0  | 5510 | 1.4888          | 0.8405 |
| 0.0102        | 20.0  | 5800 | 1.5227          | 0.8419 |
| 0.0035        | 21.0  | 6090 | 1.4994          | 0.8421 |
| 0.0035        | 22.0  | 6380 | 1.4845          | 0.8424 |
| 0.0047        | 23.0  | 6670 | 1.5006          | 0.8422 |
| 0.0047        | 24.0  | 6960 | 1.5468          | 0.8422 |
| 0.0042        | 25.0  | 7250 | 1.5333          | 0.8407 |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1