elopezlopez
commited on
Commit
·
bf80640
1
Parent(s):
54ebd96
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: xlnet-base-cased_fold_8_binary_v1
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xlnet-base-cased_fold_8_binary_v1
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5333
|
20 |
+
- F1: 0.8407
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 25
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| No log | 1.0 | 290 | 0.3866 | 0.8172 |
|
52 |
+
| 0.4299 | 2.0 | 580 | 0.4215 | 0.8246 |
|
53 |
+
| 0.4299 | 3.0 | 870 | 0.4765 | 0.8238 |
|
54 |
+
| 0.2564 | 4.0 | 1160 | 0.7283 | 0.8350 |
|
55 |
+
| 0.2564 | 5.0 | 1450 | 0.6825 | 0.8363 |
|
56 |
+
| 0.1553 | 6.0 | 1740 | 0.9637 | 0.8339 |
|
57 |
+
| 0.0893 | 7.0 | 2030 | 1.1392 | 0.8239 |
|
58 |
+
| 0.0893 | 8.0 | 2320 | 1.1868 | 0.8231 |
|
59 |
+
| 0.0538 | 9.0 | 2610 | 1.2180 | 0.8346 |
|
60 |
+
| 0.0538 | 10.0 | 2900 | 1.2353 | 0.8253 |
|
61 |
+
| 0.0386 | 11.0 | 3190 | 1.1883 | 0.8317 |
|
62 |
+
| 0.0386 | 12.0 | 3480 | 1.2786 | 0.8375 |
|
63 |
+
| 0.0289 | 13.0 | 3770 | 1.3725 | 0.8375 |
|
64 |
+
| 0.0146 | 14.0 | 4060 | 1.3171 | 0.8463 |
|
65 |
+
| 0.0146 | 15.0 | 4350 | 1.2323 | 0.8425 |
|
66 |
+
| 0.0182 | 16.0 | 4640 | 1.3169 | 0.8485 |
|
67 |
+
| 0.0182 | 17.0 | 4930 | 1.4424 | 0.8336 |
|
68 |
+
| 0.0125 | 18.0 | 5220 | 1.4336 | 0.8385 |
|
69 |
+
| 0.0102 | 19.0 | 5510 | 1.4888 | 0.8405 |
|
70 |
+
| 0.0102 | 20.0 | 5800 | 1.5227 | 0.8419 |
|
71 |
+
| 0.0035 | 21.0 | 6090 | 1.4994 | 0.8421 |
|
72 |
+
| 0.0035 | 22.0 | 6380 | 1.4845 | 0.8424 |
|
73 |
+
| 0.0047 | 23.0 | 6670 | 1.5006 | 0.8422 |
|
74 |
+
| 0.0047 | 24.0 | 6960 | 1.5468 | 0.8422 |
|
75 |
+
| 0.0042 | 25.0 | 7250 | 1.5333 | 0.8407 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.21.1
|
81 |
+
- Pytorch 1.12.0+cu113
|
82 |
+
- Datasets 2.4.0
|
83 |
+
- Tokenizers 0.12.1
|