elnasharomar2's picture
Training complete
10f79ab
metadata
base_model: elnasharomar2/ANER_arabic_keyword_extraction
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ANER_arabic_keyword_extraction
    results: []

ANER_arabic_keyword_extraction

This model is a fine-tuned version of elnasharomar2/ANER_arabic_keyword_extraction on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4047
  • Precision: 0.6061
  • Recall: 0.6492
  • F1: 0.6269
  • Accuracy: 0.9462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0108 1.0 750 0.2997 0.5879 0.6302 0.6083 0.9451
0.0104 2.0 1500 0.2822 0.5699 0.6425 0.6040 0.9428
0.007 3.0 2250 0.3270 0.5965 0.6182 0.6072 0.9446
0.0053 4.0 3000 0.3436 0.5792 0.6439 0.6099 0.9437
0.0038 5.0 3750 0.3373 0.6063 0.6223 0.6142 0.9469
0.0039 6.0 4500 0.3518 0.5961 0.6503 0.6220 0.9462
0.0031 7.0 5250 0.3654 0.5887 0.6488 0.6173 0.9445
0.0029 8.0 6000 0.3985 0.5973 0.6492 0.6222 0.9446
0.0022 9.0 6750 0.3953 0.5927 0.6570 0.6232 0.9456
0.002 10.0 7500 0.3884 0.6145 0.6365 0.6253 0.9474
0.0015 11.0 8250 0.4170 0.5964 0.6566 0.6251 0.9446
0.0015 12.0 9000 0.4421 0.5918 0.6629 0.6253 0.9445
0.0016 13.0 9750 0.4313 0.6078 0.6480 0.6273 0.9465
0.0025 14.0 10500 0.4096 0.6066 0.6432 0.6244 0.9463
0.0023 15.0 11250 0.4047 0.6061 0.6492 0.6269 0.9462

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0