Model vit_base-224-in21k-ft-cifar100

A finetuned model for Image classification in Spanish

This model was trained using Amazon SageMaker and the Hugging Face Deep Learning container, The base model is Vision Transformer (base-sized model) which is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.Link to base model

Base model citation

BibTeX entry and citation info

@misc{wu2020visual,
      title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, 
      author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
      year={2020},
      eprint={2006.03677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Dataset

Link to dataset description

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. This dataset,CIFAR100, is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs).

Sizes of datasets:

  • Train dataset: 50,000
  • Test dataset: 10,000

Intended uses & limitations

This model is intented for Image Classification.

Hyperparameters

{
"epochs": "5",
"train_batch_size": "32",    
"eval_batch_size": "8",
"fp16": "true",
"learning_rate": "1e-05",
}

Test results

  • Accuracy = 0.9148

Model in action

Usage for Image Classification

from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('edumunozsala/vit_base-224-in21k-ft-cifar100')
inputs = feature_extractor(images=image, return_tensors="pt")

outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state

Created by Eduardo Muñoz/@edumunozsala

Downloads last month
526
Safetensors
Model size
85.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train edumunozsala/vit_base-224-in21k-ft-cifar100

Evaluation results