roberta-large-ner-qlorafinetune-runs-colab-batch16

This model is a fine-tuned version of PlanTL-GOB-ES/roberta-large-bne-capitel-ner on the biobert_json dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0970
  • Precision: 0.9580
  • Recall: 0.9678
  • F1: 0.9629
  • Accuracy: 0.9821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2335 1.0 612 0.0947 0.9466 0.9517 0.9492 0.9742
0.0829 2.0 1224 0.0838 0.9446 0.9653 0.9548 0.9779
0.0593 3.0 1836 0.0753 0.9491 0.9707 0.9598 0.9811
0.0463 4.0 2448 0.0836 0.9546 0.9687 0.9616 0.9816
0.0296 5.0 3060 0.0861 0.9572 0.9616 0.9594 0.9797
0.025 6.0 3672 0.0898 0.9562 0.9635 0.9598 0.9801
0.0191 7.0 4284 0.0871 0.9570 0.9677 0.9623 0.9816
0.0184 8.0 4896 0.0898 0.9543 0.9655 0.9599 0.9805
0.013 9.0 5508 0.0933 0.9582 0.9681 0.9631 0.9822
0.0107 10.0 6120 0.0970 0.9580 0.9678 0.9629 0.9821

Framework versions

  • PEFT 0.13.2
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for edbanguera/roberta-large-ner-qlorafinetune-runs-colab-batch16

Adapter
(1)
this model