roberta-large-ner-qlorafinetune-runs-colab-batch16
This model is a fine-tuned version of PlanTL-GOB-ES/roberta-large-bne-capitel-ner on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.0970
- Precision: 0.9580
- Recall: 0.9678
- F1: 0.9629
- Accuracy: 0.9821
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2335 | 1.0 | 612 | 0.0947 | 0.9466 | 0.9517 | 0.9492 | 0.9742 |
0.0829 | 2.0 | 1224 | 0.0838 | 0.9446 | 0.9653 | 0.9548 | 0.9779 |
0.0593 | 3.0 | 1836 | 0.0753 | 0.9491 | 0.9707 | 0.9598 | 0.9811 |
0.0463 | 4.0 | 2448 | 0.0836 | 0.9546 | 0.9687 | 0.9616 | 0.9816 |
0.0296 | 5.0 | 3060 | 0.0861 | 0.9572 | 0.9616 | 0.9594 | 0.9797 |
0.025 | 6.0 | 3672 | 0.0898 | 0.9562 | 0.9635 | 0.9598 | 0.9801 |
0.0191 | 7.0 | 4284 | 0.0871 | 0.9570 | 0.9677 | 0.9623 | 0.9816 |
0.0184 | 8.0 | 4896 | 0.0898 | 0.9543 | 0.9655 | 0.9599 | 0.9805 |
0.013 | 9.0 | 5508 | 0.0933 | 0.9582 | 0.9681 | 0.9631 | 0.9822 |
0.0107 | 10.0 | 6120 | 0.0970 | 0.9580 | 0.9678 | 0.9629 | 0.9821 |
Framework versions
- PEFT 0.13.2
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Model tree for edbanguera/roberta-large-ner-qlorafinetune-runs-colab-batch16
Base model
PlanTL-GOB-ES/roberta-large-bne-capitel-ner