legal-bert-base-NER
This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
Loss: 0.0011
Accuracy: 0.9998
Precision: 0.9992
Recall: 0.9988
F1: 0.9990
Classification Report: precision recall f1-score support
LOC 1.00 1.00 1.00 1837 MISC 1.00 1.00 1.00 922 ORG 1.00 1.00 1.00 1341 PER 1.00 1.00 1.00 1842
micro avg 1.00 1.00 1.00 5942 macro avg 1.00 1.00 1.00 5942
weighted avg 1.00 1.00 1.00 5942
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report |
---|---|---|---|---|---|---|---|---|
0.0118 | 2.3 | 500 | 0.0071 | 0.9985 | 0.9896 | 0.9904 | 0.9900 | precision recall f1-score support |
LOC 0.99 0.99 0.99 1837
MISC 0.98 0.97 0.98 922
ORG 0.98 0.99 0.99 1341
PER 1.00 1.00 1.00 1842
micro avg 0.99 0.99 0.99 5942 macro avg 0.99 0.99 0.99 5942 weighted avg 0.99 0.99 0.99 5942 | | 0.0043 | 4.61 | 1000 | 0.0011 | 0.9998 | 0.9992 | 0.9988 | 0.9990 | precision recall f1-score support
LOC 1.00 1.00 1.00 1837
MISC 1.00 1.00 1.00 922
ORG 1.00 1.00 1.00 1341
PER 1.00 1.00 1.00 1842
micro avg 1.00 1.00 1.00 5942 macro avg 1.00 1.00 1.00 5942 weighted avg 1.00 1.00 1.00 5942 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
- Downloads last month
- 3