swin-tiny-patch4-window7-224-uploads-classifier-v2

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0745
  • Accuracy: 0.9843

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2482 1.0 18 0.4781 0.8824
0.3036 2.0 36 0.0936 0.9804
0.1687 3.0 54 0.0745 0.9843
0.1392 4.0 72 0.0980 0.9725
0.14 5.0 90 0.0778 0.9765
0.1186 6.0 108 0.0837 0.9725
0.1088 7.0 126 0.0645 0.9804
0.0789 8.0 144 0.0675 0.9765
0.0644 9.0 162 0.0940 0.9686
0.0582 10.0 180 0.0879 0.9725
0.0591 11.0 198 0.0935 0.9686
0.0538 12.0 216 0.0540 0.9804
0.0588 13.0 234 0.0725 0.9686
0.0538 14.0 252 0.0637 0.9765
0.0462 15.0 270 0.0694 0.9725
0.0352 16.0 288 0.0771 0.9686
0.0536 17.0 306 0.0629 0.9804
0.0403 18.0 324 0.0933 0.9686
0.0412 19.0 342 0.0848 0.9725
0.0305 20.0 360 0.0820 0.9725

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
198
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results