swin-tiny-patch4-window7-224-mulder-v-scully-colab

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3652
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6105 0.75
No log 2.0 2 0.6975 0.5
No log 3.0 3 0.8309 0.25
No log 4.0 4 0.7604 0.5
No log 5.0 5 0.6327 0.5
No log 6.0 6 0.5101 0.75
No log 7.0 7 0.4148 0.75
No log 8.0 8 0.3652 1.0
No log 9.0 9 0.3433 1.0
0.0984 10.0 10 0.3231 1.0
0.0984 11.0 11 0.3071 1.0
0.0984 12.0 12 0.3047 1.0
0.0984 13.0 13 0.3189 0.75
0.0984 14.0 14 0.3437 0.75
0.0984 15.0 15 0.3701 0.75
0.0984 16.0 16 0.3959 0.75
0.0984 17.0 17 0.4167 0.75
0.0984 18.0 18 0.4190 0.75
0.0984 19.0 19 0.4154 0.75
0.0632 20.0 20 0.4114 0.75

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results