Quantizations of https://huggingface.co/ibm-granite/granite-8b-code-instruct
Inference Clients/UIs
From original readme
Model Summary
Granite-8B-Code-Instruct-4K is a 8B parameter model fine tuned from Granite-8B-Code-Base-4K on a combination of permissively licensed instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
- Developers: IBM Research
- GitHub Repository: ibm-granite/granite-code-models
- Paper: Granite Code Models: A Family of Open Foundation Models for Code Intelligence
- Release Date: May 6th, 2024
- License: Apache 2.0.
Usage
Intended use
The model is designed to respond to coding related instructions and can be used to build coding assistants.
Generation
This is a simple example of how to use Granite-8B-Code-Instruct-4K model.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm-granite/granite-8b-code-instruct-4k"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
{ "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
- Downloads last month
- 5