|
--- |
|
language: |
|
- en |
|
datasets: |
|
- wikisql |
|
widget: |
|
- text: "English to SQL: Show me the average age of of wines in Italy by provinces" |
|
- text: "English to SQL: What is the current series where the new series began in June 2011?" |
|
--- |
|
#import transformers |
|
``` |
|
from transformers import ( |
|
T5ForConditionalGeneration, |
|
T5Tokenizer, |
|
) |
|
|
|
#load model |
|
|
|
model = T5ForConditionalGeneration.from_pretrained('dsivakumar/text2sql') |
|
tokenizer = T5Tokenizer.from_pretrained('dsivakumar/text2sql') |
|
|
|
#predict function |
|
|
|
def get_sql(query,tokenizer,model): |
|
source_text= "English to SQL: "+query |
|
source_text = ' '.join(source_text.split()) |
|
source = tokenizer.batch_encode_plus([source_text],max_length= 128, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors='pt') |
|
source_ids = source['input_ids'] #.squeeze() |
|
source_mask = source['attention_mask']#.squeeze() |
|
generated_ids = model.generate( |
|
input_ids = source_ids.to(dtype=torch.long), |
|
attention_mask = source_mask.to(dtype=torch.long), |
|
max_length=150, |
|
num_beams=2, |
|
repetition_penalty=2.5, |
|
length_penalty=1.0, |
|
early_stopping=True |
|
) |
|
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] |
|
return preds |
|
|
|
#test |
|
|
|
query="Show me the average age of of wines in Italy by provinces" |
|
sql = get_sql(query,tokenizer,model) |
|
print(sql) |
|
|
|
#https://huggingface.co/mrm8488/t5-small-finetuned-wikiSQL |
|
def get_sql(query): |
|
input_text = "translate English to SQL: %s </s>" % query |
|
features = tokenizer([input_text], return_tensors='pt') |
|
|
|
output = model.generate(input_ids=features['input_ids'], |
|
attention_mask=features['attention_mask']) |
|
|
|
return tokenizer.decode(output[0]) |
|
|
|
query = "How many models were finetuned using BERT as base model?" |
|
|
|
get_sql(query) |
|
``` |
|
|