Canarim-Bert-PosTag-Nheengatu

Camarim Logo


About

The canarim-bert-posTag-nheengatu model is a part-of-speech tagging model for the Nheengatu language, trained using the UD_Nheengatu-CompLin dataset available on github. It is based on the tokenizer and the Canarim-Bert-Nheengatu model.

Supported Tags

The model can identify the following grammatical classes:

tag abbreviation in glossary expansion of abbreviation
ADJ adj. 1st class adjective
ADP posp. postposition
ADV adv. adverb
AUX aux. auxiliary
CCONJ cconj. coordinating conjunction
DET det. determiner
INTJ interj. interjection
NOUN n. 1st class noun
NUM num. numeral
PART part. particle
PRON pron. 1st class pronoun
PROPN prop. proper noun
PUNCT punct. punctuation
SCONJ sconj. subordinating conjunction
VERB v. 1st class verb

Training

Dataset

The dataset used for training was the UD_Nheengatu-CompLin, divided into 80/10/10 proportions for training, evaluation, and testing, respectively.

DatasetDict({
    train: Dataset({
        features: ['id', 'tokens', 'pos_tags', 'text'],
        num_rows: 1068
    })
    test: Dataset({
        features: ['id', 'tokens', 'pos_tags', 'text'],
        num_rows: 134
    })
    eval: Dataset({
        features: ['id', 'tokens', 'pos_tags', 'text'],
        num_rows: 134
    })
})

Hyperparameters

The hyperparameters used for training were:

  • learning_rate: 3e-4
  • train_batch_size: 16
  • eval_batch_size: 32
  • gradient_accumulation_steps: 1
  • weight_decay: 0.01
  • num_train_epochs: 10

Results

The training and validation loss over the steps can be seen below:

Train Loss

Eval Loss

The model's results on the evaluation set can be viewed below:

{
  'eval_loss': 0.5337784886360168,
  'eval_precision': 0.913735899137359,
  'eval_recall': 0.913735899137359,
  'eval_f1': 0.913735899137359,
  'eval_accuracy': 0.913735899137359,
  'eval_runtime': 0.1957,
  'eval_samples_per_second': 684.883,
  'eval_steps_per_second': 25.555,
  'epoch': 10.0
}

Metrics

The model's evaluation metrics on the test set can be viewed below:

                precision    recall  f1-score   support

         ADJ     0.7895    0.6522    0.7143        23
         ADP     0.9355    0.9158    0.9255        95
         ADV     0.8261    0.8172    0.8216        93
         AUX     0.9444    0.9189    0.9315        37
       CCONJ     0.7778    0.8750    0.8235         8
         DET     0.8776    0.9149    0.8958        47
        INTJ     0.5000    0.5000    0.5000         4
        NOUN     0.9257    0.9222    0.9239       270
         NUM     1.0000    0.6667    0.8000         6
        PART     0.9775    0.9062    0.9405        96
        PRON     0.9568    1.0000    0.9779       155
       PROPN     0.6429    0.4286    0.5143        21
       PUNCT     0.9963    1.0000    0.9981       267
       SCONJ     0.8000    0.7500    0.7742        32
        VERB     0.8651    0.9347    0.8986       199

   micro avg     0.9202    0.9202    0.9202      1353
   macro avg     0.8543    0.8135    0.8293      1353
weighted avg     0.9191    0.9202    0.9187      1353

Canarim BERT Nheengatu - POSTAG - Confusion Matrix

Usage

The use of this model follows the common standards of the transformers library. To use it, simply install the library and load the model:

from transformers import pipeline

model_name = "dominguesm/canarim-bert-postag-nheengatu"

pipe = pipeline("ner", model=model_name)

pipe("Yamunhã timbiú, yapinaitika, yamunhã kaxirí.", aggregation_strategy="average")

The result will be:

[
  {"entity_group": "VERB", "score": 0.999668, "word": "Yamunhã", "start": 0, "end": 7},
  {"entity_group": "NOUN", "score": 0.99986947, "word": "timbiú", "start": 8, "end": 14},
  {"entity_group": "PUNCT", "score": 0.99993193, "word": ",", "start": 14, "end": 15},
  {"entity_group": "VERB", "score": 0.9995308, "word": "yapinaitika", "start": 16, "end": 27},
  {"entity_group": "PUNCT", "score": 0.9999416, "word": ",", "start": 27, "end": 28},
  {"entity_group": "VERB", "score": 0.99955815, "word": "yamunhã", "start": 29, "end": 36},
  {"entity_group": "NOUN", "score": 0.9998684, "word": "kaxirí", "start": 37, "end": 43},
  {"entity_group": "PUNCT", "score": 0.99997807, "word": ".", "start": 43, "end": 44}
]

License

The license of this model follows that of the dataset used for training, which is CC BY-NC-SA 4.0. For more information, please visit the dataset repository.

References

@inproceedings{stil,
  author = {Leonel de Alencar},
  title = {Yauti: A Tool for Morphosyntactic Analysis of Nheengatu within the Universal Dependencies Framework},
  booktitle = {Anais do XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana},
  location = {Belo Horizonte/MG},
  year = {2023},
  keywords = {},
  issn = {0000-0000},
  pages = {135--145},
  publisher = {SBC},
  address = {Porto Alegre, RS, Brasil},
  doi = {10.5753/stil.2023.234131},
  url = {https://sol.sbc.org.br/index.php/stil/article/view/25445}
}
Downloads last month
17
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including dominguesm/canarim-bert-postag-nheengatu

Evaluation results