license: apache-2.0
tags:
- text2text-generation
- generated_from_trainer
metrics:
- rouge
- bleu
datasets:
- domenicrosati/QA2D
model-index:
- name: QA2D-t5-small
results:
- task:
name: Question to Declarative Sentence
type: text2text-generation
dataset:
name: domenicrosati/QA2D
type: domenicrosati/QA2D
args: plain_text
metrics:
- name: Rouge1
type: rouge
value: 89.8753
- name: Rouge2
type: rouge
value: 81.8104
- name: Rougel
type: rouge
value: 85.4253
- name: Rougelsum
type: rouge
value: 85.4236
- name: Bleu
type: bleu
value: 72.108
widget:
- text: where in the world is carmen sandiego. she is in abruzzo
example_title: Where is Carmen Sandiego?
- text: which province is halifax in. nova scotia
example_title: A Halifact
QA2D-t5-small
This model is a fine-tuned version of t5-small on QA2D. It achieves the following results on the evaluation set:
- Loss: 0.3236
- Rouge1: 89.8753
- Rouge2: 81.8104
- Rougel: 85.4253
- Rougelsum: 85.4236
- Bleu: 72.1080
See: https://wandb.ai/domenicrosati/huggingface/runs/n1yallpe for training and eval stats and https://github.com/domenicrosati/qa2d-models for the code!
Model description
A t5-model model to convert questions, answer pairs into statements.
Due to the way it's been trained the input should be all lower case and punctuation removed.
Use with .
as the seperator between question and answer.
"where in the world is carmen. abruzzo" Output: "carmen is in abruzzo"
Thought punctation and upper case works.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained('domenicrosati/QA2D-t5-small')
model = AutoModelForSeq2SeqLM.from_pretrained('domenicrosati/QA2D-t5-small')
question = "where in the world is carmen sandiego"
answer = "she is in abruzzo"
SEP = ". "
prompt = f'{question}{SEP}{answer}'
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
output_ids = model.generate(input_ids)
responses = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
# ['carmen sandiego is in abruzzo']
Intended uses & limitations
To convert questions, answer pairs into statements.
Training and evaluation data
Uses QA2D.
See https://github.com/domenicrosati/qa2d-models
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
---|---|---|---|---|---|---|---|---|
0.3177 | 1.0 | 5060 | 0.3144 | 89.6379 | 81.3168 | 85.2036 | 85.1904 | 71.4255 |
0.2479 | 2.0 | 10120 | 0.3035 | 89.7816 | 81.6556 | 85.3541 | 85.3406 | 71.7248 |
0.2268 | 3.0 | 15180 | 0.3015 | 89.8287 | 81.698 | 85.3434 | 85.3387 | 71.8344 |
0.2111 | 4.0 | 20240 | 0.3014 | 89.8082 | 81.7192 | 85.4094 | 85.406 | 71.9172 |
0.1991 | 5.0 | 25300 | 0.3023 | 89.8776 | 81.7607 | 85.3912 | 85.3842 | 71.9417 |
0.1886 | 6.0 | 30360 | 0.3012 | 89.901 | 81.7614 | 85.3345 | 85.3315 | 72.0218 |
0.1803 | 7.0 | 35420 | 0.3010 | 89.8776 | 81.8189 | 85.4154 | 85.4097 | 72.0533 |
0.1724 | 8.0 | 40480 | 0.3041 | 89.9168 | 81.8663 | 85.4457 | 85.4447 | 72.1470 |
0.1654 | 9.0 | 45540 | 0.3076 | 89.8901 | 81.8536 | 85.4857 | 85.4863 | 72.0830 |
0.1601 | 10.0 | 50600 | 0.3083 | 89.9186 | 81.881 | 85.4653 | 85.4594 | 72.1048 |
0.1546 | 11.0 | 55660 | 0.3136 | 89.8958 | 81.8533 | 85.4217 | 85.4238 | 72.0752 |
0.1502 | 12.0 | 60720 | 0.3138 | 89.903 | 81.8604 | 85.4301 | 85.4267 | 72.1373 |
0.1461 | 13.0 | 65780 | 0.3140 | 89.8867 | 81.7945 | 85.3698 | 85.3662 | 72.0718 |
0.1423 | 14.0 | 70840 | 0.3171 | 89.8985 | 81.8221 | 85.4348 | 85.4331 | 72.1168 |
0.1392 | 15.0 | 75900 | 0.3186 | 89.8938 | 81.8246 | 85.402 | 85.3991 | 72.0858 |
0.1366 | 16.0 | 80960 | 0.3208 | 89.859 | 81.8133 | 85.4194 | 85.4182 | 72.1014 |
0.1344 | 17.0 | 86020 | 0.3222 | 89.8909 | 81.828 | 85.4392 | 85.435 | 72.1380 |
0.1324 | 18.0 | 91080 | 0.3226 | 89.8906 | 81.8351 | 85.4506 | 85.4441 | 72.1622 |
0.1309 | 19.0 | 96140 | 0.3231 | 89.8925 | 81.8369 | 85.4375 | 85.4366 | 72.1552 |
0.1305 | 20.0 | 101200 | 0.3236 | 89.8753 | 81.8104 | 85.4253 | 85.4236 | 72.1080 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1