Docto Bot

Usage (HuggingFace Transformers)

pip install -U transformers
import random
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("docto/Docto-Bot")
model = AutoModelForCausalLM.from_pretrained("docto/Docto-Bot")
special_token = '<|endoftext|>'

prompt_text = 'Question: I am having fever\nAnswer:'
#prompt_text = f'Question: {userinput}\nAnswer:'
encoded_prompt = tokenizer.encode(prompt_text,
                                  add_special_tokens = False,
                                  return_tensors = 'pt')
output_sequences = model.generate(
    input_ids = encoded_prompt,
    max_length = 700,
    temperature = 0.9,
    top_k = 20,
    top_p = 0.9,
    repetition_penalty = 1,
    do_sample = True,
    num_return_sequences = 4
)
result = tokenizer.decode(random.choice(output_sequences))
result = result[result.index("Answer: "):result.index(special_token)]
print(result[8:])

Training Data

The Docto-Bot was trained on Medical Question/Answer dataset

Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using docto/Docto-Bot 1