AltCLIP
개요
AltCLIP 모델은 Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu의 AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities 논문에서 제안되었습니다. AltCLIP(CLIP의 언어 인코더를 변경하여 언어 기능 확장)은 다양한 이미지-텍스트 및 텍스트-텍스트 쌍으로 훈련된 신경망입니다. CLIP의 텍스트 인코더를 사전 훈련된 다국어 텍스트 인코더 XLM-R로 교체하여, 거의 모든 작업에서 CLIP과 유사한 성능을 얻을 수 있었으며, 원래 CLIP의 다국어 이해와 같은 기능도 확장되었습니다.
논문의 초록은 다음과 같습니다:
본 연구에서는 강력한 이중 언어 멀티모달 표현 모델을 훈련하는 개념적으로 간단하고 효과적인 방법을 제시합니다. OpenAI에서 출시한 사전 훈련된 멀티모달 표현 모델 CLIP에서 시작하여, 그 텍스트 인코더를 사전 훈련된 다국어 텍스트 인코더 XLM-R로 교체하고, 교사 학습과 대조 학습으로 구성된 2단계 훈련 스키마를 통해 언어와 이미지 표현을 정렬했습니다. 우리는 광범위한 작업 평가를 통해 우리의 방법을 검증했습니다. ImageNet-CN, Flicker30k-CN, COCO-CN을 포함한 여러 작업에서 새로운 최고 성능을 달성했으며, 거의 모든 작업에서 CLIP과 유사한 성능을 얻었습니다. 이는 CLIP의 텍스트 인코더를 단순히 변경하여 다국어 이해와 같은 확장 기능을 얻을 수 있음을 시사합니다.
이 모델은 jongjyh에 의해 기여되었습니다.
사용 팁과 예제
AltCLIP의 사용법은 CLIP과 매우 유사하며, 차이점은 텍스트 인코더에 있습니다. 일반적인 어텐션 대신 양방향 어텐션을 사용하며, XLM-R의 [CLS] 토큰을 사용하여 텍스트 임베딩을 나타냅니다.
AltCLIP은 멀티모달 비전 및 언어 모델입니다. 이미지와 텍스트 간의 유사성 계산 및 제로샷 이미지 분류에 사용할 수 있습니다. AltCLIP은 ViT와 같은 트랜스포머를 사용하여 시각적 특징을 얻고, 양방향 언어 모델을 사용하여 텍스트 특징을 얻습니다. 이후 텍스트와 시각적 특징 모두 동일한 차원의 잠재 공간으로 투사됩니다. 투사된 이미지와 텍스트 특징 간의 내적을 유사도 점수로 사용합니다.
이미지를 트랜스포머 인코더에 입력하기 위해, 각 이미지를 일정한 크기의 겹치지 않는 패치 시퀀스로 분할한 뒤, 이를 선형 임베딩합니다. 전체 이미지를 나타내기 위해 [CLS] 토큰이 추가됩니다. 저자들은 절대 위치 임베딩도 추가하여 결과 벡터 시퀀스를 표준 트랜스포머 인코더에 입력합니다. CLIPImageProcessor는 모델을 위해 이미지를 크기 조정하고 정규화하는 데 사용할 수 있습니다.
AltCLIPProcessor는 CLIPImageProcessor와 XLMRobertaTokenizer
를 하나의 인스턴스로 묶어 텍스트를 인코딩하고 이미지를 준비합니다. 다음 예제는 AltCLIPProcessor와 AltCLIPModel을 사용하여 이미지와 텍스트 간의 유사성 점수를 얻는 방법을 보여줍니다.
>>> from PIL import Image
>>> import requests
>>> from transformers import AltCLIPModel, AltCLIPProcessor
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # 이미지-텍스트 유사도 점수
>>> probs = logits_per_image.softmax(dim=1) # 라벨 마다 확률을 얻기 위해 softmax 적용
이 모델은 CLIPModel
을 기반으로 하므로, 원래 CLIP처럼 사용할 수 있습니다.
AltCLIPConfig
class transformers.AltCLIPConfig
< source >( text_config = None vision_config = None projection_dim = 768 logit_scale_init_value = 2.6592 **kwargs )
Parameters
- text_config (
dict
, optional) — Dictionary of configuration options used to initialize AltCLIPTextConfig. - vision_config (
dict
, optional) — Dictionary of configuration options used to initialize AltCLIPVisionConfig. - projection_dim (
int
, optional, defaults to 768) — Dimensionality of text and vision projection layers. - logit_scale_init_value (
float
, optional, defaults to 2.6592) — The initial value of the logit_scale parameter. Default is used as per the original CLIP implementation. - kwargs (optional) — Dictionary of keyword arguments.
This is the configuration class to store the configuration of a AltCLIPModel. It is used to instantiate an AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the AltCLIP BAAI/AltCLIP architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import AltCLIPConfig, AltCLIPModel
>>> # Initializing a AltCLIPConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPConfig()
>>> # Initializing a AltCLIPModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a AltCLIPConfig from a AltCLIPTextConfig and a AltCLIPVisionConfig
>>> # Initializing a AltCLIPText and AltCLIPVision configuration
>>> config_text = AltCLIPTextConfig()
>>> config_vision = AltCLIPVisionConfig()
>>> config = AltCLIPConfig.from_text_vision_configs(config_text, config_vision)
from_text_vision_configs
< source >( text_config: AltCLIPTextConfig vision_config: AltCLIPVisionConfig **kwargs ) → AltCLIPConfig
Instantiate a AltCLIPConfig (or a derived class) from altclip text model configuration and altclip vision model configuration.
AltCLIPTextConfig
class transformers.AltCLIPTextConfig
< source >( vocab_size = 250002 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 514 type_vocab_size = 1 initializer_range = 0.02 initializer_factor = 0.02 layer_norm_eps = 1e-05 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True project_dim = 768 **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 250002) — Vocabulary size of the AltCLIP model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling AltCLIPTextModel. - hidden_size (
int
, optional, defaults to 1024) — Dimensionality of the encoder layers and the pooler layer. - num_hidden_layers (
int
, optional, defaults to 24) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int
, optional, defaults to 16) — Number of attention heads for each attention layer in the Transformer encoder. - intermediate_size (
int
, optional, defaults to 4096) — Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder. - hidden_act (
str
orCallable
, optional, defaults to"gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"silu"
and"gelu_new"
are supported. - hidden_dropout_prob (
float
, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. - attention_probs_dropout_prob (
float
, optional, defaults to 0.1) — The dropout ratio for the attention probabilities. - max_position_embeddings (
int
, optional, defaults to 514) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). - type_vocab_size (
int
, optional, defaults to 1) — The vocabulary size of thetoken_type_ids
passed when calling AltCLIPTextModel - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - initializer_factor (
float
, optional, defaults to 0.02) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). - layer_norm_eps (
float
, optional, defaults to 1e-05) — The epsilon used by the layer normalization layers. - pad_token_id (
int
, optional, defaults to 1) — The id of the padding token. - bos_token_id (
int
, optional, defaults to 0) — The id of the beginning-of-sequence token. - eos_token_id (
Union[int, List[int]]
, optional, defaults to 2) — The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. - position_embedding_type (
str
, optional, defaults to"absolute"
) — Type of position embedding. Choose one of"absolute"
,"relative_key"
,"relative_key_query"
. For positional embeddings use"absolute"
. For more information on"relative_key"
, please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on"relative_key_query"
, please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.). - use_cache (
bool
, optional, defaults toTrue
) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True
. - project_dim (
int
, optional, defaults to 768) — The dimensions of the teacher model before the mapping layer.
This is the configuration class to store the configuration of a AltCLIPTextModel. It is used to instantiate a AltCLIP text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the AltCLIP BAAI/AltCLIP architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Examples:
>>> from transformers import AltCLIPTextModel, AltCLIPTextConfig
>>> # Initializing a AltCLIPTextConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPTextConfig()
>>> # Initializing a AltCLIPTextModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
AltCLIPVisionConfig
class transformers.AltCLIPVisionConfig
< source >( hidden_size = 768 intermediate_size = 3072 projection_dim = 512 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 image_size = 224 patch_size = 32 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 attention_dropout = 0.0 initializer_range = 0.02 initializer_factor = 1.0 **kwargs )
Parameters
- hidden_size (
int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. - intermediate_size (
int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - projection_dim (
int
, optional, defaults to 512) — Dimensionality of text and vision projection layers. - num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder. - num_channels (
int
, optional, defaults to 3) — The number of input channels. - image_size (
int
, optional, defaults to 224) — The size (resolution) of each image. - patch_size (
int
, optional, defaults to 32) — The size (resolution) of each patch. - hidden_act (
str
orfunction
, optional, defaults to"quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
"quick_gelu"
are supported. - layer_norm_eps (
float
, optional, defaults to 1e-05) — The epsilon used by the layer normalization layers. - attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - initializer_factor (
float
, optional, defaults to 1.0) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
This is the configuration class to store the configuration of a AltCLIPModel. It is used to instantiate an AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the AltCLIP BAAI/AltCLIP architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import AltCLIPVisionConfig, AltCLIPVisionModel
>>> # Initializing a AltCLIPVisionConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPVisionConfig()
>>> # Initializing a AltCLIPVisionModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
AltCLIPProcessor
class transformers.AltCLIPProcessor
< source >( image_processor = None tokenizer = None )
Parameters
- image_processor (CLIPImageProcessor, optional) — The image processor is a required input.
- tokenizer (
XLMRobertaTokenizerFast
, optional) — The tokenizer is a required input.
Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single processor.
AltCLIPProcessor offers all the functionalities of CLIPImageProcessor and XLMRobertaTokenizerFast
. See
the __call__()
and decode() for more information.
This method forwards all its arguments to XLMRobertaTokenizerFast’s batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to XLMRobertaTokenizerFast’s decode(). Please refer to the docstring of this method for more information.
AltCLIPModel
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.Tensor] = None return_loss: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → transformers.models.altclip.modeling_altclip.AltCLIPOutput
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - return_loss (
bool
, optional) — Whether or not to return the contrastive loss. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.altclip.modeling_altclip.AltCLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.altclip.modeling_altclip.AltCLIPOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.altclip.configuration_altclip.AltCLIPConfig'>
) and inputs.
- loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenreturn_loss
isTrue
) — Contrastive loss for image-text similarity. - logits_per_image (
torch.FloatTensor
of shape(image_batch_size, text_batch_size)
) — The scaled dot product scores betweenimage_embeds
andtext_embeds
. This represents the image-text similarity scores. - logits_per_text (
torch.FloatTensor
of shape(text_batch_size, image_batch_size)
) — The scaled dot product scores betweentext_embeds
andimage_embeds
. This represents the text-image similarity scores. - text_embeds (
torch.FloatTensor
of shape(batch_size, output_dim
) — The text embeddings obtained by applying the projection layer to the pooled output of AltCLIPTextModel. - image_embeds (
torch.FloatTensor
of shape(batch_size, output_dim
) — The image embeddings obtained by applying the projection layer to the pooled output of AltCLIPVisionModel. - text_model_output (
BaseModelOutputWithPooling
) — The output of the AltCLIPTextModel. - vision_model_output (
BaseModelOutputWithPooling
) — The output of the AltCLIPVisionModel.
The AltCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPModel
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
get_text_features
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None token_type_ids = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of AltCLIPTextModel.
The AltCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoProcessor, AltCLIPModel
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
get_image_features
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of AltCLIPVisionModel.
The AltCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPModel
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
AltCLIPTextModel
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndProjection
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPoolingAndProjection
or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPoolingAndProjection
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.altclip.configuration_altclip.AltCLIPTextConfig'>
) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
projection_state (
tuple(torch.FloatTensor)
, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
of shape(batch_size,config.project_dim)
.Text embeddings before the projection layer, used to mimic the last hidden state of the teacher encoder.
The AltCLIPTextModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoProcessor, AltCLIPTextModel
>>> model = AltCLIPTextModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> texts = ["it's a cat", "it's a dog"]
>>> inputs = processor(text=texts, padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
AltCLIPVisionModel
forward
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.altclip.configuration_altclip.AltCLIPVisionConfig'>
) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The AltCLIPVisionModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPVisionModel
>>> model = AltCLIPVisionModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states