Transformers documentation

UMT5

You are viewing v4.45.1 version. A newer version v4.47.1 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

UMT5

Models Spaces

Overview

The UMT5 model was proposed in UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.

The abstract from the paper is the following:

Pretrained multilingual large language models have typically used heuristic temperature-based sampling to balance between different languages. However previous work has not systematically evaluated the efficacy of different pretraining language distributions across model scales. In this paper, we propose a new sampling method, UniMax, that delivers more uniform coverage of head languages while mitigating overfitting on tail languages by explicitly capping the number of repeats over each language’s corpus. We perform an extensive series of ablations testing a range of sampling strategies on a suite of multilingual benchmarks, while varying model scale. We find that UniMax outperforms standard temperature-based sampling, and the benefits persist as scale increases. As part of our contribution, we release: (i) an improved and refreshed mC4 multilingual corpus consisting of 29 trillion characters across 107 languages, and (ii) a suite of pretrained umT5 model checkpoints trained with UniMax sampling.

Google has released the following variants:

This model was contributed by agemagician and stefan-it. The original code can be found here.

Usage tips

  • UMT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5 model.
  • Since umT5 was pre-trained in an unsupervised manner, there’s no real advantage to using a task prefix during single-task fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.

Differences with mT5?

UmT5 is based on mT5, with a non-shared relative positional bias that is computed for each layer. This means that the model set has_relative_bias for each layer. The conversion script is also different because the model was saved in t5x’s latest checkpointing format.

Sample usage

>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")

>>> inputs = tokenizer(
...     "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
...     return_tensors="pt",
... )
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs))
['<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s>']

Refer to T5’s documentation page for more tips, code examples and notebooks.

UMT5Config

class transformers.UMT5Config

< >

( vocab_size = 250112 d_model = 512 d_kv = 64 d_ff = 1024 num_layers = 8 num_decoder_layers = None num_heads = 6 relative_attention_num_buckets = 32 relative_attention_max_distance = 128 dropout_rate = 0.1 layer_norm_epsilon = 1e-06 initializer_factor = 1.0 feed_forward_proj = 'gated-gelu' is_encoder_decoder = True use_cache = True tokenizer_class = 'T5Tokenizer' tie_word_embeddings = True pad_token_id = 0 eos_token_id = 1 decoder_start_token_id = 0 classifier_dropout = 0.0 **kwargs )

Parameters

  • vocab_size (int, optional, defaults to 250112) — Vocabulary size of the UMT5 model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling UMT5Model or TFUMT5Model.
  • d_model (int, optional, defaults to 512) — Size of the encoder layers and the pooler layer.
  • d_kv (int, optional, defaults to 64) — Size of the key, query, value projections per attention head. d_kv has to be equal to d_model // num_heads.
  • d_ff (int, optional, defaults to 1024) — Size of the intermediate feed forward layer in each UMT5Block.
  • num_layers (int, optional, defaults to 8) — Number of hidden layers in the Transformer encoder.
  • num_decoder_layers (int, optional) — Number of hidden layers in the Transformer decoder. Will use the same value as num_layers if not set.
  • num_heads (int, optional, defaults to 6) — Number of attention heads for each attention layer in the Transformer encoder.
  • relative_attention_num_buckets (int, optional, defaults to 32) — The number of buckets to use for each attention layer.
  • relative_attention_max_distance (int, optional, defaults to 128) — The maximum distance of the longer sequences for the bucket separation.
  • dropout_rate (float, optional, defaults to 0.1) — The ratio for all dropout layers.
  • classifier_dropout (float, optional, defaults to 0.0) — The dropout ratio for classifier.
  • layer_norm_eps (float, optional, defaults to 1e-6) — The epsilon used by the layer normalization layers.
  • initializer_factor (float, optional, defaults to 1) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
  • feed_forward_proj (string, optional, defaults to "gated-gelu") — Type of feed forward layer to be used. Should be one of "relu" or "gated-gelu".
  • use_cache (bool, optional, defaults to True) — Whether or not the model should return the last key/values attentions (not used by all models).

This is the configuration class to store the configuration of a UMT5Model. It is used to instantiate a UMT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UMT5 google/umt5-small architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

UMT5Model

class transformers.UMT5Model

< >

( config )

Parameters

  • config (UMT5Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The bare UMT5 Model transformer outputting raw hidden-states without any specific head on top.

The UMT5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Examples:

>>> from transformers import UMT5Model, AutoTokenizer

>>> model = UMT5Model.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> noisy_text = "UN Offizier sagt, dass weiter <extra_id_0> werden muss in Syrien."
>>> label = "<extra_id_0> verhandelt"
>>> inputs = tokenizer(inputs, return_tensors="pt")
>>> labels = tokenizer(label=label, return_tensors="pt")

>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state

forward

< >

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for detail.

    What are input IDs?

    To know more on how to prepare input_ids for pretraining take a look a UMT5 Training.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are decoder input IDs?

    UMT5 uses the pad_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

    To know more on how to prepare decoder_input_ids for pretraining take a look at UMT5 Training.

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • decoder_head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size) is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If decoder_input_ids and decoder_inputs_embeds are both unset, decoder_inputs_embeds takes the value of inputs_embeds.

  • use_cache (bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (UMT5Config) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the decoder of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

The UMT5Model forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoTokenizer, UMT5Model

>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5Model.from_pretrained("google/umt5-small")

>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1

>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model.
>>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)

>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state

UMT5ForConditionalGeneration

class transformers.UMT5ForConditionalGeneration

< >

( config )

Parameters

  • config (UMT5Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

UMT5 Model with a language modeling head on top.

The UMT5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Examples:

>>> from transformers import UMT5ForConditionalGeneration, AutoTokenizer

>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="pt")

>>> outputs = model(**inputs)
>>> loss = outputs.loss

forward

< >

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for detail.

    What are input IDs?

    To know more on how to prepare input_ids for pretraining take a look a UMT5 Training.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are decoder input IDs?

    UMT5 uses the pad_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

    To know more on how to prepare decoder_input_ids for pretraining take a look at UMT5 Training.

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • decoder_head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size) is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If decoder_input_ids and decoder_inputs_embeds are both unset, decoder_inputs_embeds takes the value of inputs_embeds.

  • use_cache (bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [-100, 0, ..., config.vocab_size - 1]. All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

Returns

transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (UMT5Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Language modeling loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

The UMT5ForConditionalGeneration forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from transformers import AutoTokenizer, UMT5ForConditionalGeneration

>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")

>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

>>> # inference
>>> input_ids = tokenizer("Studies have shown that <extra_id_0> good for you", return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)

UMT5EncoderModel

class transformers.UMT5EncoderModel

< >

( config )

Parameters

  • config (UMT5Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The bare UMT5 Model transformer outputting encoder’s raw hidden-states without any specific head on top.

The UMT5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Examples:

>>> from transformers import UMT5EncoderModel, AutoTokenizer

>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="pt").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state

forward

< >

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for detail.

    To know more on how to prepare input_ids for pretraining take a look a UMT5 Training.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (UMT5Config) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The UMT5EncoderModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoTokenizer, UMT5EncoderModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state

UMT5ForSequenceClassification

class transformers.UMT5ForSequenceClassification

< >

( config: UMT5Config )

Parameters

  • config (UMT5Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

UMT5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

The UMT5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for detail.

    What are input IDs?

    To know more on how to prepare input_ids for pretraining take a look a UMT5 Training.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are decoder input IDs?

    UMT5 uses the pad_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

    To know more on how to prepare decoder_input_ids for pretraining take a look at UMT5 Training.

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • decoder_head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size) is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If decoder_input_ids and decoder_inputs_embeds are both unset, decoder_inputs_embeds takes the value of inputs_embeds.

  • use_cache (bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (UMT5Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when label is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

The UMT5ForSequenceClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

UMT5ForTokenClassification

class transformers.UMT5ForTokenClassification

< >

( config: UMT5Config )

Parameters

  • config (UMT5Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

UMT5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

The UMT5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for detail.

    What are input IDs?

    To know more on how to prepare input_ids for pretraining take a look a UMT5 Training.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are decoder input IDs?

    UMT5 uses the pad_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

    To know more on how to prepare decoder_input_ids for pretraining take a look at UMT5 Training.

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • decoder_head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size) is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If decoder_input_ids and decoder_inputs_embeds are both unset, decoder_inputs_embeds takes the value of inputs_embeds.

  • use_cache (bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.TokenClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (UMT5Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The UMT5ForTokenClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

UMT5ForQuestionAnswering

class transformers.UMT5ForQuestionAnswering

< >

( config )

Parameters

  • config (UMT5Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

UMT5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers on top of the hidden-states output to compute span start logits and span end logits).

The UMT5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None start_positions: Optional = None end_positions: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for detail.

    What are input IDs?

    To know more on how to prepare input_ids for pretraining take a look a UMT5 Training.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are decoder input IDs?

    UMT5 uses the pad_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

    To know more on how to prepare decoder_input_ids for pretraining take a look at UMT5 Training.

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • decoder_head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size) is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If decoder_input_ids and decoder_inputs_embeds are both unset, decoder_inputs_embeds takes the value of inputs_embeds.

  • use_cache (bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (UMT5Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

The UMT5ForQuestionAnswering forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

< > Update on GitHub