Models
PeftModel is the base model class for specifying the base Transformer model and configuration to apply a PEFT method to. The base PeftModel
contains methods for loading and saving models from the Hub.
PeftModel
class peft.PeftModel
< source >( model: PreTrainedModel peft_config: PeftConfig adapter_name: str = 'default' )
Parameters
- model (PreTrainedModel) — The base transformer model used for Peft.
- peft_config (PeftConfig) — The configuration of the Peft model.
- adapter_name (
str
, optional) — The name of the adapter, defaults to"default"
.
Base model encompassing various Peft methods.
Attributes:
- base_model (
torch.nn.Module
) — The base transformer model used for Peft. - peft_config (PeftConfig) — The configuration of the Peft model.
- modules_to_save (
list
ofstr
) — The list of sub-module names to save when saving the model. - prompt_encoder (PromptEncoder) — The prompt encoder used for Peft if using PromptLearningConfig.
- prompt_tokens (
torch.Tensor
) — The virtual prompt tokens used for Peft if using PromptLearningConfig. - transformer_backbone_name (
str
) — The name of the transformer backbone in the base model if using PromptLearningConfig. - word_embeddings (
torch.nn.Embedding
) — The word embeddings of the transformer backbone in the base model if using PromptLearningConfig.
add_adapter
< source >( adapter_name: str peft_config: PeftConfig )
Parameters
- adapter_name (
str
) — The name of the adapter to be added. - peft_config (PeftConfig) — The configuration of the adapter to be added.
Add an adapter to the model based on the passed configuration.
The name for the new adapter should be unique.
The new adapter is not automatically set as the active adapter. Use PeftModel.set_adapter() to set the active adapter.
Updates or create model card to include information about peft:
- Adds
peft
library tag - Adds peft version
- Adds base model info
- Adds quantization information if it was used
Context manager that disables the adapter module. Use this to run inference on the base model.
Forward pass of the model.
from_pretrained
< source >( model: torch.nn.Module model_id: Union[str, os.PathLike] adapter_name: str = 'default' is_trainable: bool = False config: Optional[PeftConfig] = None **kwargs: Any )
Parameters
- model (
torch.nn.Module
) — The model to be adapted. For 🤗 Transformers models, the model should be initialized with the from_pretrained. - model_id (
str
oros.PathLike
) — The name of the PEFT configuration to use. Can be either:- A string, the
model id
of a PEFT configuration hosted inside a model repo on the Hugging Face Hub. - A path to a directory containing a PEFT configuration file saved using the
save_pretrained
method (./my_peft_config_directory/
).
- A string, the
- adapter_name (
str
, optional, defaults to"default"
) — The name of the adapter to be loaded. This is useful for loading multiple adapters. - is_trainable (
bool
, optional, defaults toFalse
) — Whether the adapter should be trainable or not. IfFalse
, the adapter will be frozen and can only be used for inference. - config (PeftConfig, optional) —
The configuration object to use instead of an automatically loaded configuation. This configuration
object is mutually exclusive with
model_id
andkwargs
. This is useful when configuration is already loaded before callingfrom_pretrained
. kwargs — (optional
): Additional keyword arguments passed along to the specific PEFT configuration class.
Instantiate a PEFT model from a pretrained model and loaded PEFT weights.
Note that the passed model
may be modified inplace.
Returns the base model.
Returns the number of trainable parameters and the number of all parameters in the model.
Returns the virtual prompts to use for Peft. Only applicable when using a prompt learning method.
Returns the prompt embedding to save when saving the model. Only applicable when using a prompt learning method.
load_adapter
< source >( model_id: str adapter_name: str is_trainable: bool = False **kwargs: Any )
Parameters
- adapter_name (
str
) — The name of the adapter to be added. - peft_config (PeftConfig) — The configuration of the adapter to be added.
- is_trainable (
bool
, optional, defaults toFalse
) — Whether the adapter should be trainable or not. IfFalse
, the adapter will be frozen and can only be used for inference. kwargs — (optional
): Additional arguments to modify the way the adapter is loaded, e.g. the token for Hugging Face Hub.
Load a trained adapter into the model.
The name for the new adapter should be unique.
The new adapter is not automatically set as the active adapter. Use PeftModel.set_adapter() to set the active adapter.
Prints the number of trainable parameters in the model.
save_pretrained
< source >( save_directory: str safe_serialization: bool = True selected_adapters: Optional[List[str]] = None save_embedding_layers: Union[str, bool] = 'auto' is_main_process: bool = True **kwargs: Any )
Parameters
- save_directory (
str
) — Directory where the adapter model and configuration files will be saved (will be created if it does not exist). - safe_serialization (
bool
, optional) — Whether to save the adapter files in safetensors format, defaults toTrue
. - selected_adapters (
List[str]
, optional) — A list of adapters to be saved. IfNone
, will default to all adapters. - save_embedding_layers (
Union[bool, str]
, optional, defaults to"auto"
) — IfTrue
, save the embedding layers in addition to adapter weights. Ifauto
, checks the common embedding layerspeft.utils.other.EMBEDDING_LAYER_NAMES
in config’starget_modules
when available. and automatically sets the boolean flag. This only works for 🤗 transformers models. - is_main_process (
bool
, optional) — Whether the process calling this is the main process or not. Will default toTrue
. Will not save the checkpoint if not on the main process, which is important for multi device setups (e.g. DDP). - kwargs (additional keyword arguments, optional) —
Additional keyword arguments passed along to the
push_to_hub
method.
This function saves the adapter model and the adapter configuration files to a directory, so that it can be
reloaded using the PeftModel.from_pretrained() class method, and also used by the PeftModel.push_to_hub()
method.
set_adapter
< source >( adapter_name: str )
Sets the active adapter.
Only one adapter can be active at a time.
PeftModelForSequenceClassification
A PeftModel
for sequence classification tasks.
class peft.PeftModelForSequenceClassification
< source >( model: torch.nn.Module peft_config: PeftConfig adapter_name: str = 'default' )
Parameters
- model (PreTrainedModel) — Base transformer model.
- peft_config (PeftConfig) — Peft config.
Peft model for sequence classification tasks.
Attributes:
- config (PretrainedConfig) — The configuration object of the base model.
- cls_layer_name (
str
) — The name of the classification layer.
Example:
>>> from transformers import AutoModelForSequenceClassification
>>> from peft import PeftModelForSequenceClassification, get_peft_config
>>> config = {
... "peft_type": "PREFIX_TUNING",
... "task_type": "SEQ_CLS",
... "inference_mode": False,
... "num_virtual_tokens": 20,
... "token_dim": 768,
... "num_transformer_submodules": 1,
... "num_attention_heads": 12,
... "num_layers": 12,
... "encoder_hidden_size": 768,
... "prefix_projection": False,
... "postprocess_past_key_value_function": None,
... }
>>> peft_config = get_peft_config(config)
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased")
>>> peft_model = PeftModelForSequenceClassification(model, peft_config)
>>> peft_model.print_trainable_parameters()
trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117
PeftModelForTokenClassification
A PeftModel
for token classification tasks.
class peft.PeftModelForTokenClassification
< source >( model: torch.nn.Module peft_config: PeftConfig = None adapter_name: str = 'default' )
Parameters
- model (PreTrainedModel) — Base transformer model.
- peft_config (PeftConfig) — Peft config.
Peft model for token classification tasks.
Attributes:
- config (PretrainedConfig) — The configuration object of the base model.
- cls_layer_name (
str
) — The name of the classification layer.
Example:
>>> from transformers import AutoModelForSequenceClassification
>>> from peft import PeftModelForTokenClassification, get_peft_config
>>> config = {
... "peft_type": "PREFIX_TUNING",
... "task_type": "TOKEN_CLS",
... "inference_mode": False,
... "num_virtual_tokens": 20,
... "token_dim": 768,
... "num_transformer_submodules": 1,
... "num_attention_heads": 12,
... "num_layers": 12,
... "encoder_hidden_size": 768,
... "prefix_projection": False,
... "postprocess_past_key_value_function": None,
... }
>>> peft_config = get_peft_config(config)
>>> model = AutoModelForTokenClassification.from_pretrained("bert-base-cased")
>>> peft_model = PeftModelForTokenClassification(model, peft_config)
>>> peft_model.print_trainable_parameters()
trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117
PeftModelForCausalLM
A PeftModel
for causal language modeling.
class peft.PeftModelForCausalLM
< source >( model: torch.nn.Module peft_config: PeftConfig adapter_name: str = 'default' )
Parameters
- model (PreTrainedModel) — Base transformer model.
- peft_config (PeftConfig) — Peft config.
Peft model for causal language modeling.
Example:
>>> from transformers import AutoModelForCausalLM
>>> from peft import PeftModelForCausalLM, get_peft_config
>>> config = {
... "peft_type": "PREFIX_TUNING",
... "task_type": "CAUSAL_LM",
... "inference_mode": False,
... "num_virtual_tokens": 20,
... "token_dim": 1280,
... "num_transformer_submodules": 1,
... "num_attention_heads": 20,
... "num_layers": 36,
... "encoder_hidden_size": 1280,
... "prefix_projection": False,
... "postprocess_past_key_value_function": None,
... }
>>> peft_config = get_peft_config(config)
>>> model = AutoModelForCausalLM.from_pretrained("gpt2-large")
>>> peft_model = PeftModelForCausalLM(model, peft_config)
>>> peft_model.print_trainable_parameters()
trainable params: 1843200 || all params: 775873280 || trainable%: 0.23756456724479544
PeftModelForSeq2SeqLM
A PeftModel
for sequence-to-sequence language modeling.
class peft.PeftModelForSeq2SeqLM
< source >( model: torch.nn.Module peft_config: PeftConfig adapter_name: str = 'default' )
Parameters
- model (PreTrainedModel) — Base transformer model.
- peft_config (PeftConfig) — Peft config.
Peft model for sequence-to-sequence language modeling.
Example:
>>> from transformers import AutoModelForSeq2SeqLM
>>> from peft import PeftModelForSeq2SeqLM, get_peft_config
>>> config = {
... "peft_type": "LORA",
... "task_type": "SEQ_2_SEQ_LM",
... "inference_mode": False,
... "r": 8,
... "target_modules": ["q", "v"],
... "lora_alpha": 32,
... "lora_dropout": 0.1,
... "fan_in_fan_out": False,
... "enable_lora": None,
... "bias": "none",
... }
>>> peft_config = get_peft_config(config)
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> peft_model = PeftModelForSeq2SeqLM(model, peft_config)
>>> peft_model.print_trainable_parameters()
trainable params: 884736 || all params: 223843584 || trainable%: 0.3952474242013566
PeftModelForQuestionAnswering
A PeftModel
for question answering.
class peft.PeftModelForQuestionAnswering
< source >( model: torch.nn.Module peft_config: PeftConfig adapter_name: str = 'default' )
Parameters
- model (PreTrainedModel) — Base transformer model.
- peft_config (PeftConfig) — Peft config.
Peft model for extractive question answering.
Attributes:
- config (PretrainedConfig) — The configuration object of the base model.
- cls_layer_name (
str
) — The name of the classification layer.
Example:
>>> from transformers import AutoModelForQuestionAnswering
>>> from peft import PeftModelForQuestionAnswering, get_peft_config
>>> config = {
... "peft_type": "LORA",
... "task_type": "QUESTION_ANS",
... "inference_mode": False,
... "r": 16,
... "target_modules": ["query", "value"],
... "lora_alpha": 32,
... "lora_dropout": 0.05,
... "fan_in_fan_out": False,
... "bias": "none",
... }
>>> peft_config = get_peft_config(config)
>>> model = AutoModelForQuestionAnswering.from_pretrained("bert-base-cased")
>>> peft_model = PeftModelForQuestionAnswering(model, peft_config)
>>> peft_model.print_trainable_parameters()
trainable params: 592900 || all params: 108312580 || trainable%: 0.5473971721475013
PeftModelForFeatureExtraction
A PeftModel
for getting extracting features/embeddings from transformer models.
class peft.PeftModelForFeatureExtraction
< source >( model: torch.nn.Module peft_config: PeftConfig adapter_name: str = 'default' )
Parameters
- model (PreTrainedModel) — Base transformer model.
- peft_config (PeftConfig) — Peft config.
Peft model for extracting features/embeddings from transformer models
Attributes:
- config (PretrainedConfig) — The configuration object of the base model.
Example:
>>> from transformers import AutoModel
>>> from peft import PeftModelForFeatureExtraction, get_peft_config
>>> config = {
... "peft_type": "LORA",
... "task_type": "FEATURE_EXTRACTION",
... "inference_mode": False,
... "r": 16,
... "target_modules": ["query", "value"],
... "lora_alpha": 32,
... "lora_dropout": 0.05,
... "fan_in_fan_out": False,
... "bias": "none",
... }
>>> peft_config = get_peft_config(config)
>>> model = AutoModel.from_pretrained("bert-base-cased")
>>> peft_model = PeftModelForFeatureExtraction(model, peft_config)
>>> peft_model.print_trainable_parameters()