LoKr
Low-Rank Kronecker Product (LoKr), is a LoRA-variant method that approximates the large weight matrix with two low-rank matrices and combines them with the Kronecker product. LoKr also provides an optional third low-rank matrix to provide better control during fine-tuning.
LoKrConfig
class peft.LoKrConfig
< source >( peft_type: typing.Union[str, peft.utils.peft_types.PeftType, NoneType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: typing.Optional[str] = None revision: typing.Optional[str] = None task_type: typing.Union[str, peft.utils.peft_types.TaskType, NoneType] = None inference_mode: bool = False rank_pattern: Optional[dict] = <factory> alpha_pattern: Optional[dict] = <factory> r: int = 8 alpha: int = 8 rank_dropout: float = 0.0 module_dropout: float = 0.0 use_effective_conv2d: bool = False decompose_both: bool = False decompose_factor: int = -1 target_modules: typing.Union[typing.List[str], str, NoneType] = None init_weights: bool = True layers_to_transform: typing.Union[typing.List[int], int, NoneType] = None layers_pattern: typing.Optional[str] = None modules_to_save: typing.Optional[typing.List[str]] = None )
Parameters
- r (
int
) — LoKr rank. - alpha (
int
) — The alpha parameter for LoKr scaling. - rank_dropout (
int
) — The dropout probability for rank dimension during training. - module_dropout (
int
) — The dropout probability for disabling LoKr modules during training. - use_effective_conv2d (
bool
) — Use parameter effective decomposition for Conv2d with ksize > 1 (“Proposition 3” from FedPara paper). - decompose_both (
bool
) — Perform rank decomposition of left kronecker product matrix. - decompose_factor (
int
) — Kronecker product decomposition factor. - target_modules (
Union[List[str],str]
) — The names of the modules to apply LoKr to. - init_weights (
bool
) — Whether to perform initialization of LoKr weights. - layers_to_transform (
Union[List[int],int]
) — The layer indexes to transform, if this argument is specified, it will apply the LoKr transformations on the layer indexes that are specified in this list. If a single integer is passed, it will apply the LoKr transformations on the layer at this index. - layers_pattern (
str
) — The layer pattern name, used only iflayers_to_transform
is different fromNone
and if the layer pattern is not in the common layers pattern. - rank_pattern (
dict
) — The mapping from layer names or regexp expression to ranks which are different from the default rank specified byr
. - alpha_pattern (
dict
) — The mapping from layer names or regexp expression to alphas which are different from the default alpha specified byalpha
. - modules_to_save (
List[str]
) — The names of modules to be set as trainable except LoKr parameters.
Configuration class of LoKrModel.
LoKrModel
class peft.LoKrModel
< source >( model config adapter_name ) → torch.nn.Module
Parameters
- model (
torch.nn.Module
) — The model to which the adapter tuner layers will be attached. - config (LoKrConfig) — The configuration of the LoKr model.
- adapter_name (
str
) — The name of the adapter, defaults to"default"
.
Returns
torch.nn.Module
The LoKr model.
Creates Low-Rank Kronecker Product model from a pretrained model. The original method is partially described in https://arxiv.org/abs/2108.06098 and in https://arxiv.org/abs/2309.14859 Current implementation heavily borrows from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py
Example:
>>> from diffusers import StableDiffusionPipeline
>>> from peft import LoKrModel, LoKrConfig
>>> config_te = LoKrConfig(
... r=8,
... lora_alpha=32,
... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
... rank_dropout=0.0,
... module_dropout=0.0,
... init_weights=True,
... )
>>> config_unet = LoKrConfig(
... r=8,
... lora_alpha=32,
... target_modules=[
... "proj_in",
... "proj_out",
... "to_k",
... "to_q",
... "to_v",
... "to_out.0",
... "ff.net.0.proj",
... "ff.net.2",
... ],
... rank_dropout=0.0,
... module_dropout=0.0,
... init_weights=True,
... use_effective_conv2d=True,
... )
>>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> model.text_encoder = LoKrModel(model.text_encoder, config_te, "default")
>>> model.unet = LoKrModel(model.unet, config_unet, "default")
Attributes:
- model (
~torch.nn.Module
) — The model to be adapted. - peft_config (LoKrConfig): The configuration of the LoKr model.