Optimum documentation

Configuration

You are viewing v1.3.0 version. A newer version v1.23.3 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Configuration

OptimizationConfig

class optimum.onnxruntime.configuration.OptimizationConfig

< >

( optimization_level: int = 1 optimize_for_gpu: bool = False fp16: bool = False optimize_with_onnxruntime_only: bool = False disable_gelu: bool = False disable_layer_norm: bool = False disable_attention: bool = False disable_skip_layer_norm: bool = False disable_bias_skip_layer_norm: bool = False disable_bias_gelu: bool = False enable_gelu_approximation: bool = False use_mask_index: bool = False no_attention_mask: bool = False disable_embed_layer_norm: bool = True )

Parameters

  • optimization_level (int, defaults to 1) — ONNX opset version to export the model with. Optimization level performed by ONNX Runtime of the loaded graph. Supported optimization level are 0, 1, 2 and 99. 0 will disable all optimizations. 1 will enable basic optimizations. 2 will enable basic and extended optimizations, including complex node fusions applied to the nodes assigned to the CPU or CUDA execution provider, making the resulting optimized graph hardware dependent. 99 will enable all available optimizations including layout optimizations.
  • optimize_for_gpu (bool, defaults to False) — Whether to optimize the model for GPU inference. The optimized graph might contain operators for GPU or CPU only when optimization_level > 1.
  • fp16 (bool, defaults to False) — Whether all weights and nodes should be converted from float32 to float16.
  • optimize_with_onnxruntime_only (bool, defaults to False) — Whether to only use ONNX Runtime to optimize the model and no graph fusion in Python.
  • disable_gelu (bool, defaults to False) — Whether to disable the Gelu fusion.
  • disable_layer_norm (bool, defaults to False) — Whether to disable Layer Normalization fusion.
  • disable_attention (bool, defaults to False) — Whether to disable Attention fusion.
  • disable_skip_layer_norm (bool, defaults to False) — Whether to disable SkipLayerNormalization fusion.
  • disable_bias_skip_layer_norm (bool, defaults to False) — Whether to disable Add Bias and SkipLayerNormalization fusion.
  • disable_bias_gelu (bool, defaults to False) — Whether to disable Add Bias and Gelu / FastGelu fusion.
  • enable_gelu_approximation (bool, defaults to False) — Whether to enable Gelu / BiasGelu to FastGelu conversion. The default value is set to False since this approximation might slightly impact the model’s accuracy.
  • use_mask_index (bool, defaults to False) — Whether to use mask index instead of raw attention mask in the attention operator.
  • no_attention_mask (bool, defaults to False) — Whether to not use attention masks. Only works for bert model type.
  • disable_embed_layer_norm (bool, defaults to True) — Whether to disable EmbedLayerNormalization fusion. The default value is set to True since this fusion is incompatible with ONNX Runtime quantization

OptimizationConfig is the configuration class handling all the ONNX Runtime optimization parameters.

QuantizationConfig

class optimum.onnxruntime.configuration.QuantizationConfig

< >

( is_static: bool format: QuantFormat mode: QuantizationMode = <QuantizationMode.QLinearOps: 1> activations_dtype: QuantType = <QuantType.QUInt8: 1> activations_symmetric: bool = False weights_dtype: QuantType = <QuantType.QInt8: 0> weights_symmetric: bool = True per_channel: bool = False reduce_range: bool = False nodes_to_quantize: typing.List[str] = <factory> nodes_to_exclude: typing.List[str] = <factory> operators_to_quantize: typing.List[str] = <factory> qdq_add_pair_to_weight: bool = False qdq_dedicated_pair: bool = False qdq_op_type_per_channel_support_to_axis: typing.Dict[str, int] = <factory> )

Parameters

  • is_static (bool) — Whether to apply static quantization or dynamic quantization.
  • format (QuantFormat) — Targeted ONNX Runtime quantization representation format. For the Operator Oriented (QOperator) format, all the quantized operators have their own ONNX definitions. For the Tensor Oriented (QDQ) format, the model is quantized by inserting QuantizeLinear / DeQuantizeLinear operators.
  • mode (QuantizationMode, defaults to QuantizationMode.QLinearOps) — Targeted ONNX Runtime quantization mode, default is QLinearOps to match QDQ format. When targeting dynamic quantization mode, the default value is QuantizationMode.IntegerOps whereas the default value for static quantization mode is QuantizationMode.QLinearOps.
  • activations_dtype (QuantType, defaults to QuantType.QUInt8) — The quantization data types to use for the activations.
  • activations_symmetric (bool, defaults to False) — Whether to apply symmetric quantization on the activations.
  • weights_dtype (QuantType, defaults to QuantType.QInt8) — The quantization data types to use for the weights.
  • weights_symmetric (bool, defaults to True) — Whether to apply symmetric quantization on the weights.
  • per_channel (bool, defaults to False) — Whether we should quantize per-channel (also known as “per-row”). Enabling this can increase overall accuracy while making the quantized model heavier.
  • reduce_range (bool, defaults to False) — Whether to use reduce-range 7-bits integers instead of 8-bits integers.
  • nodes_to_quantize (list) — List of the nodes names to quantize.
  • nodes_to_exclude (list) — List of the nodes names to exclude when applying quantization.
  • operators_to_quantize (list) — List of the operators types to quantize.
  • qdq_add_pair_to_weight (bool, defaults to False) — By default, floating-point weights are quantized and feed to solely inserted DeQuantizeLinear node. If set to True, the floating-point weights will remain and both QuantizeLinear / DeQuantizeLinear nodes will be inserted.
  • qdq_dedicated_pair (bool, defaults to False) — When inserting QDQ pair, multiple nodes can share a single QDQ pair as their inputs. If True, it will create an identical and dedicated QDQ pair for each node.
  • qdq_op_type_per_channel_support_to_axis (Dict[str, int]) — Set the channel axis for a specific operator type. Effective only when per channel quantization is supported and per_channel is set to True.

QuantizationConfig is the configuration class handling all the ONNX Runtime quantization parameters.

CalibrationConfig

class optimum.onnxruntime.configuration.CalibrationConfig

< >

( dataset_name: str dataset_config_name: str dataset_split: str dataset_num_samples: int method: CalibrationMethod num_bins: typing.Optional[int] = None num_quantized_bins: typing.Optional[int] = None percentile: typing.Optional[float] = None moving_average: typing.Optional[bool] = None averaging_constant: typing.Optional[float] = None )

Parameters

  • dataset_name (str) — The name of the calibration dataset.
  • dataset_config_name (str) — The name of the calibration dataset configuration.
  • dataset_split (str) — Which split of the dataset is used to perform the calibration step.
  • dataset_num_samples (int) — The number of samples composing the calibration dataset.
  • method (CalibrationMethod) — The method chosen to calculate the activations quantization parameters using the calibration dataset.
  • num_bins (int, optional) — The number of bins to use when creating the histogram when performing the calibration step using the Percentile or Entropy method.
  • num_quantized_bins (int, optional) — The number of quantized bins to use when performing the calibration step using the Entropy method.
  • percentile (float, optional) — The percentile to use when computing the activations quantization ranges when performing the calibration step using the Percentile method.
  • moving_average (bool, optional) — Whether to compute the moving average of the minimum and maximum values when performing the calibration step using the MinMax method.
  • averaging_constant (float, optional) — The constant smoothing factor to use when computing the moving average of the minimum and maximum values. Effective only when the MinMax calibration method is selected and moving_average is set to True.

CalibrationConfig is the configuration class handling all the ONNX Runtime parameters related to the calibration step of static quantization.

ORTConfig

class optimum.onnxruntime.ORTConfig

< >

( opset: typing.Optional[int] = None use_external_data_format: bool = False optimization: typing.Optional[optimum.onnxruntime.configuration.OptimizationConfig] = None quantization: typing.Optional[optimum.onnxruntime.configuration.QuantizationConfig] = None **kwargs )

Parameters

  • opset (int, optional) — ONNX opset version to export the model with.
  • use_external_data_format (bool, optional, defaults to False) — Allow exporting model >= than 2Gb.
  • optimization (OptimizationConfig, optional, defaults to None) — Specify a configuration to optimize ONNX Runtime model
  • quantization (QuantizationConfig, optional, defaults to None) — Specify a configuration to quantize ONNX Runtime model

ORTConfig is the configuration class handling all the ONNX Runtime parameters related to the ONNX IR model export, optimization and quantization parameters.