Diffusers documentation

PyTorch 2.0

You are viewing v0.27.2 version. A newer version v0.32.1 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

PyTorch 2.0

πŸ€— Diffusers supports the latest optimizations from PyTorch 2.0 which include:

  1. A memory-efficient attention implementation, scaled dot product attention, without requiring any extra dependencies such as xFormers.
  2. torch.compile, a just-in-time (JIT) compiler to provide an extra performance boost when individual models are compiled.

Both of these optimizations require PyTorch 2.0 or later and πŸ€— Diffusers > 0.13.0.

pip install --upgrade torch diffusers

Scaled dot product attention

torch.nn.functional.scaled_dot_product_attention (SDPA) is an optimized and memory-efficient attention (similar to xFormers) that automatically enables several other optimizations depending on the model inputs and GPU type. SDPA is enabled by default if you’re using PyTorch 2.0 and the latest version of πŸ€— Diffusers, so you don’t need to add anything to your code.

However, if you want to explicitly enable it, you can set a DiffusionPipeline to use AttnProcessor2_0:

  import torch
  from diffusers import DiffusionPipeline
+ from diffusers.models.attention_processor import AttnProcessor2_0

  pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
+ pipe.unet.set_attn_processor(AttnProcessor2_0())

  prompt = "a photo of an astronaut riding a horse on mars"
  image = pipe(prompt).images[0]

SDPA should be as fast and memory efficient as xFormers; check the benchmark for more details.

In some cases - such as making the pipeline more deterministic or converting it to other formats - it may be helpful to use the vanilla attention processor, AttnProcessor. To revert to AttnProcessor, call the set_default_attn_processor() function on the pipeline:

  import torch
  from diffusers import DiffusionPipeline

  pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
+ pipe.unet.set_default_attn_processor()

  prompt = "a photo of an astronaut riding a horse on mars"
  image = pipe(prompt).images[0]

torch.compile

The torch.compile function can often provide an additional speed-up to your PyTorch code. In πŸ€— Diffusers, it is usually best to wrap the UNet with torch.compile because it does most of the heavy lifting in the pipeline.

from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images[0]

Depending on GPU type, torch.compile can provide an additional speed-up of 5-300x on top of SDPA! If you’re using more recent GPU architectures such as Ampere (A100, 3090), Ada (4090), and Hopper (H100), torch.compile is able to squeeze even more performance out of these GPUs.

Compilation requires some time to complete, so it is best suited for situations where you prepare your pipeline once and then perform the same type of inference operations multiple times. For example, calling the compiled pipeline on a different image size triggers compilation again which can be expensive.

For more information and different options about torch.compile, refer to the torch_compile tutorial.

Learn more about other ways PyTorch 2.0 can help optimize your model in the Accelerate inference of text-to-image diffusion models tutorial.

Benchmark

We conducted a comprehensive benchmark with PyTorch 2.0’s efficient attention implementation and torch.compile across different GPUs and batch sizes for five of our most used pipelines. The code is benchmarked on πŸ€— Diffusers v0.17.0.dev0 to optimize torch.compile usage (see here for more details).

Expand the dropdown below to find the code used to benchmark each pipeline:

Stable Diffusion text-to-image

from diffusers import DiffusionPipeline
import torch

path = "runwayml/stable-diffusion-v1-5"

run_compile = True  # Set True / False

pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)

if run_compile:
    print("Run torch compile")
    pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

prompt = "ghibli style, a fantasy landscape with castles"

for _ in range(3):
    images = pipe(prompt=prompt).images

Stable Diffusion image-to-image

from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.utils import load_image
import torch

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

init_image = load_image(url)
init_image = init_image.resize((512, 512))

path = "runwayml/stable-diffusion-v1-5"

run_compile = True  # Set True / False

pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)

if run_compile:
    print("Run torch compile")
    pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

prompt = "ghibli style, a fantasy landscape with castles"

for _ in range(3):
    image = pipe(prompt=prompt, image=init_image).images[0]

Stable Diffusion inpainting

from diffusers import StableDiffusionInpaintPipeline
from diffusers.utils import load_image
import torch

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = load_image(img_url).resize((512, 512))
mask_image = load_image(mask_url).resize((512, 512))

path = "runwayml/stable-diffusion-inpainting"

run_compile = True  # Set True / False

pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)

if run_compile:
    print("Run torch compile")
    pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

prompt = "ghibli style, a fantasy landscape with castles"

for _ in range(3):
    image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]

ControlNet

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.utils import load_image
import torch

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

init_image = load_image(url)
init_image = init_image.resize((512, 512))

path = "runwayml/stable-diffusion-v1-5"

run_compile = True  # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)

pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe.controlnet.to(memory_format=torch.channels_last)

if run_compile:
    print("Run torch compile")
    pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
    pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)

prompt = "ghibli style, a fantasy landscape with castles"

for _ in range(3):
    image = pipe(prompt=prompt, image=init_image).images[0]

DeepFloyd IF text-to-image + upscaling

from diffusers import DiffusionPipeline
import torch

run_compile = True  # Set True / False

pipe_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16, use_safetensors=True)
pipe_1.to("cuda")
pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16, use_safetensors=True)
pipe_2.to("cuda")
pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16, use_safetensors=True)
pipe_3.to("cuda")


pipe_1.unet.to(memory_format=torch.channels_last)
pipe_2.unet.to(memory_format=torch.channels_last)
pipe_3.unet.to(memory_format=torch.channels_last)

if run_compile:
    pipe_1.unet = torch.compile(pipe_1.unet, mode="reduce-overhead", fullgraph=True)
    pipe_2.unet = torch.compile(pipe_2.unet, mode="reduce-overhead", fullgraph=True)
    pipe_3.unet = torch.compile(pipe_3.unet, mode="reduce-overhead", fullgraph=True)

prompt = "the blue hulk"

prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
neg_prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)

for _ in range(3):
    image_1 = pipe_1(prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
    image_2 = pipe_2(image=image_1, prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
    image_3 = pipe_3(prompt=prompt, image=image_1, noise_level=100).images

The graph below highlights the relative speed-ups for the StableDiffusionPipeline across five GPU families with PyTorch 2.0 and torch.compile enabled. The benchmarks for the following graphs are measured in number of iterations/second.

t2i_speedup

To give you an even better idea of how this speed-up holds for the other pipelines, consider the following graph for an A100 with PyTorch 2.0 and torch.compile:

a100_numbers

In the following tables, we report our findings in terms of the number of iterations/second.

A100 (batch size: 1)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 21.66 23.13 44.03 49.74
SD - img2img 21.81 22.40 43.92 46.32
SD - inpaint 22.24 23.23 43.76 49.25
SD - controlnet 15.02 15.82 32.13 36.08
IF 20.21 /
13.84 /
24.00
20.12 /
13.70 /
24.03
❌ 97.34 /
27.23 /
111.66
SDXL - txt2img 8.64 9.9 - -

A100 (batch size: 4)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 11.6 13.12 14.62 17.27
SD - img2img 11.47 13.06 14.66 17.25
SD - inpaint 11.67 13.31 14.88 17.48
SD - controlnet 8.28 9.38 10.51 12.41
IF 25.02 18.04 ❌ 48.47
SDXL - txt2img 2.44 2.74 - -

A100 (batch size: 16)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 3.04 3.6 3.83 4.68
SD - img2img 2.98 3.58 3.83 4.67
SD - inpaint 3.04 3.66 3.9 4.76
SD - controlnet 2.15 2.58 2.74 3.35
IF 8.78 9.82 ❌ 16.77
SDXL - txt2img 0.64 0.72 - -

V100 (batch size: 1)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 18.99 19.14 20.95 22.17
SD - img2img 18.56 19.18 20.95 22.11
SD - inpaint 19.14 19.06 21.08 22.20
SD - controlnet 13.48 13.93 15.18 15.88
IF 20.01 /
9.08 /
23.34
19.79 /
8.98 /
24.10
❌ 55.75 /
11.57 /
57.67

V100 (batch size: 4)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 5.96 5.89 6.83 6.86
SD - img2img 5.90 5.91 6.81 6.82
SD - inpaint 5.99 6.03 6.93 6.95
SD - controlnet 4.26 4.29 4.92 4.93
IF 15.41 14.76 ❌ 22.95

V100 (batch size: 16)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 1.66 1.66 1.92 1.90
SD - img2img 1.65 1.65 1.91 1.89
SD - inpaint 1.69 1.69 1.95 1.93
SD - controlnet 1.19 1.19 OOM after warmup 1.36
IF 5.43 5.29 ❌ 7.06

T4 (batch size: 1)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 6.9 6.95 7.3 7.56
SD - img2img 6.84 6.99 7.04 7.55
SD - inpaint 6.91 6.7 7.01 7.37
SD - controlnet 4.89 4.86 5.35 5.48
IF 17.42 /
2.47 /
18.52
16.96 /
2.45 /
18.69
❌ 24.63 /
2.47 /
23.39
SDXL - txt2img 1.15 1.16 - -

T4 (batch size: 4)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 1.79 1.79 2.03 1.99
SD - img2img 1.77 1.77 2.05 2.04
SD - inpaint 1.81 1.82 2.09 2.09
SD - controlnet 1.34 1.27 1.47 1.46
IF 5.79 5.61 ❌ 7.39
SDXL - txt2img 0.288 0.289 - -

T4 (batch size: 16)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 2.34s 2.30s OOM after 2nd iteration 1.99s
SD - img2img 2.35s 2.31s OOM after warmup 2.00s
SD - inpaint 2.30s 2.26s OOM after 2nd iteration 1.95s
SD - controlnet OOM after 2nd iteration OOM after 2nd iteration OOM after warmup OOM after warmup
IF * 1.44 1.44 ❌ 1.94
SDXL - txt2img OOM OOM - -

RTX 3090 (batch size: 1)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 22.56 22.84 23.84 25.69
SD - img2img 22.25 22.61 24.1 25.83
SD - inpaint 22.22 22.54 24.26 26.02
SD - controlnet 16.03 16.33 17.38 18.56
IF 27.08 /
9.07 /
31.23
26.75 /
8.92 /
31.47
❌ 68.08 /
11.16 /
65.29

RTX 3090 (batch size: 4)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 6.46 6.35 7.29 7.3
SD - img2img 6.33 6.27 7.31 7.26
SD - inpaint 6.47 6.4 7.44 7.39
SD - controlnet 4.59 4.54 5.27 5.26
IF 16.81 16.62 ❌ 21.57

RTX 3090 (batch size: 16)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 1.7 1.69 1.93 1.91
SD - img2img 1.68 1.67 1.93 1.9
SD - inpaint 1.72 1.71 1.97 1.94
SD - controlnet 1.23 1.22 1.4 1.38
IF 5.01 5.00 ❌ 6.33

RTX 4090 (batch size: 1)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 40.5 41.89 44.65 49.81
SD - img2img 40.39 41.95 44.46 49.8
SD - inpaint 40.51 41.88 44.58 49.72
SD - controlnet 29.27 30.29 32.26 36.03
IF 69.71 /
18.78 /
85.49
69.13 /
18.80 /
85.56
❌ 124.60 /
26.37 /
138.79
SDXL - txt2img 6.8 8.18 - -

RTX 4090 (batch size: 4)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 12.62 12.84 15.32 15.59
SD - img2img 12.61 12,.79 15.35 15.66
SD - inpaint 12.65 12.81 15.3 15.58
SD - controlnet 9.1 9.25 11.03 11.22
IF 31.88 31.14 ❌ 43.92
SDXL - txt2img 2.19 2.35 - -

RTX 4090 (batch size: 16)

Pipeline torch 2.0 -
no compile
torch nightly -
no compile
torch 2.0 -
compile
torch nightly -
compile
SD - txt2img 3.17 3.2 3.84 3.85
SD - img2img 3.16 3.2 3.84 3.85
SD - inpaint 3.17 3.2 3.85 3.85
SD - controlnet 2.23 2.3 2.7 2.75
IF 9.26 9.2 ❌ 13.31
SDXL - txt2img 0.52 0.53 - -

Notes

  • Follow this PR for more details on the environment used for conducting the benchmarks.
  • For the DeepFloyd IF pipeline where batch sizes > 1, we only used a batch size of > 1 in the first IF pipeline for text-to-image generation and NOT for upscaling. That means the two upscaling pipelines received a batch size of 1.

Thanks to Horace He from the PyTorch team for their support in improving our support of torch.compile() in Diffusers.