Datasets documentation

Use with PyTorch

You are viewing v2.19.0 version. A newer version v3.2.0 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Use with PyTorch

This document is a quick introduction to using datasets with PyTorch, with a particular focus on how to get torch.Tensor objects out of our datasets, and how to use a PyTorch DataLoader and a Hugging Face Dataset with the best performance.

Dataset format

By default, datasets return regular python objects: integers, floats, strings, lists, etc.

To get PyTorch tensors instead, you can set the format of the dataset to pytorch using Dataset.with_format():

>>> from datasets import Dataset
>>> data = [[1, 2],[3, 4]]
>>> ds = Dataset.from_dict({"data": data})
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': tensor([1, 2])}
>>> ds[:2]
{'data': tensor([[1, 2],
         [3, 4]])}

A Dataset object is a wrapper of an Arrow table, which allows fast zero-copy reads from arrays in the dataset to PyTorch tensors.

To load the data as tensors on a GPU, specify the device argument:

>>> import torch
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> ds = ds.with_format("torch", device=device)
>>> ds[0]
{'data': tensor([1, 2], device='cuda:0')}

N-dimensional arrays

If your dataset consists of N-dimensional arrays, you will see that by default they are considered as nested lists. In particular, a PyTorch formatted dataset outputs nested lists instead of a single tensor:

>>> from datasets import Dataset
>>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]]
>>> ds = Dataset.from_dict({"data": data})
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': [tensor([1, 2]), tensor([3, 4])]}

To get a single tensor, you must explicitly use the Array feature type and specify the shape of your tensors:

>>> from datasets import Dataset, Features, Array2D
>>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]]
>>> features = Features({"data": Array2D(shape=(2, 2), dtype='int32')})
>>> ds = Dataset.from_dict({"data": data}, features=features)
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': tensor([[1, 2],
         [3, 4]])}
>>> ds[:2]
{'data': tensor([[[1, 2],
          [3, 4]],
 
         [[5, 6],
          [7, 8]]])}

Other feature types

ClassLabel data are properly converted to tensors:

>>> from datasets import Dataset, Features, ClassLabel
>>> labels = [0, 0, 1]
>>> features = Features({"label": ClassLabel(names=["negative", "positive"])})
>>> ds = Dataset.from_dict({"label": labels}, features=features) 
>>> ds = ds.with_format("torch")  
>>> ds[:3]
{'label': tensor([0, 0, 1])}

String and binary objects are unchanged, since PyTorch only supports numbers.

The Image and Audio feature types are also supported.

To use the Image feature type, you’ll need to install the vision extra as pip install datasets[vision].

>>> from datasets import Dataset, Features, Audio, Image
>>> images = ["path/to/image.png"] * 10
>>> features = Features({"image": Image()})
>>> ds = Dataset.from_dict({"image": images}, features=features) 
>>> ds = ds.with_format("torch")
>>> ds[0]["image"].shape
torch.Size([512, 512, 4])
>>> ds[0]
{'image': tensor([[[255, 215, 106, 255],
         [255, 215, 106, 255],
         ...,
         [255, 255, 255, 255],
         [255, 255, 255, 255]]], dtype=torch.uint8)}
>>> ds[:2]["image"].shape
torch.Size([2, 512, 512, 4])
>>> ds[:2]
{'image': tensor([[[[255, 215, 106, 255],
          [255, 215, 106, 255],
          ...,
          [255, 255, 255, 255],
          [255, 255, 255, 255]]]], dtype=torch.uint8)}

To use the Audio feature type, you’ll need to install the audio extra as pip install datasets[audio].

>>> from datasets import Dataset, Features, Audio, Image
>>> audio = ["path/to/audio.wav"] * 10
>>> features = Features({"audio": Audio()})
>>> ds = Dataset.from_dict({"audio": audio}, features=features) 
>>> ds = ds.with_format("torch")  
>>> ds[0]["audio"]["array"]
tensor([ 6.1035e-05,  1.5259e-05,  1.6785e-04,  ..., -1.5259e-05,
        -1.5259e-05,  1.5259e-05])
>>> ds[0]["audio"]["sampling_rate"]
tensor(44100)

Data loading

Like torch.utils.data.Dataset objects, a Dataset can be passed directly to a PyTorch DataLoader:

>>> import numpy as np
>>> from datasets import Dataset 
>>> from torch.utils.data import DataLoader
>>> data = np.random.rand(16)
>>> label = np.random.randint(0, 2, size=16)
>>> ds = Dataset.from_dict({"data": data, "label": label}).with_format("torch")
>>> dataloader = DataLoader(ds, batch_size=4)
>>> for batch in dataloader:
...     print(batch)                                                                                            
{'data': tensor([0.0047, 0.4979, 0.6726, 0.8105]), 'label': tensor([0, 1, 0, 1])}
{'data': tensor([0.4832, 0.2723, 0.4259, 0.2224]), 'label': tensor([0, 0, 0, 0])}
{'data': tensor([0.5837, 0.3444, 0.4658, 0.6417]), 'label': tensor([0, 1, 0, 0])}
{'data': tensor([0.7022, 0.1225, 0.7228, 0.8259]), 'label': tensor([1, 1, 1, 1])}

Optimize data loading

There are several ways you can increase the speed your data is loaded which can save you time, especially if you are working with large datasets. PyTorch offers parallelized data loading, retrieving batches of indices instead of individually, and streaming to iterate over the dataset without downloading it on disk.

Use multiple Workers

You can parallelize data loading with the num_workers argument of a PyTorch DataLoader and get a higher throughput.

Under the hood, the DataLoader starts num_workers processes. Each process reloads the dataset passed to the DataLoader and is used to query examples. Reloading the dataset inside a worker doesn’t fill up your RAM, since it simply memory-maps the dataset again from your disk.

>>> import numpy as np
>>> from datasets import Dataset, load_from_disk
>>> from torch.utils.data import DataLoader
>>> data = np.random.rand(10_000)
>>> Dataset.from_dict({"data": data}).save_to_disk("my_dataset")
>>> ds = load_from_disk("my_dataset").with_format("torch")
>>> dataloader = DataLoader(ds, batch_size=32, num_workers=4)

Stream data

Stream a dataset by loading it as an IterableDataset. This allows you to progressively iterate over a remote dataset without downloading it on disk and or over local data files. Learn more about which type of dataset is best for your use case in the choosing between a regular dataset or an iterable dataset guide.

An iterable dataset from datasets inherits from torch.utils.data.IterableDataset so you can pass it to a torch.utils.data.DataLoader:

>>> import numpy as np
>>> from datasets import Dataset, load_dataset
>>> from torch.utils.data import DataLoader
>>> data = np.random.rand(10_000)
>>> Dataset.from_dict({"data": data}).push_to_hub("<username>/my_dataset")  # Upload to the Hugging Face Hub
>>> my_iterable_dataset = load_dataset("<username>/my_dataset", streaming=True, split="train")
>>> dataloader = DataLoader(my_iterable_dataset, batch_size=32)

If the dataset is split in several shards (i.e. if the dataset consists of multiple data files), then you can stream in parallel using num_workers:

>>> my_iterable_dataset = load_dataset("deepmind/code_contests", streaming=True, split="train")
>>> my_iterable_dataset.n_shards
39
>>> dataloader = DataLoader(my_iterable_dataset, batch_size=32, num_workers=4)

In this case each worker is given a subset of the list of shards to stream from.

Distributed

To split your dataset across your training nodes, you can use datasets.distributed.split_dataset_by_node():

import os
from datasets.distributed import split_dataset_by_node

ds = split_dataset_by_node(ds, rank=int(os.environ["RANK"]), world_size=int(os.environ["WORLD_SIZE"]))

This works for both map-style datasets and iterable datasets. The dataset is split for the node at rank rank in a pool of nodes of size world_size.

For map-style datasets:

Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset.

For iterable datasets:

If the dataset has a number of shards that is a factor of world_size (i.e. if dataset.n_shards % world_size == 0), then the shards are evenly assigned across the nodes, which is the most optimized. Otherwise, each node keeps 1 example out of world_size, skipping the other examples.

This can also be combined with a torch.utils.data.DataLoader if you want each node to use multiple workers to load the data.