File size: 15,176 Bytes
d72b2c3
 
 
 
 
731cb10
d72b2c3
 
731cb10
d72b2c3
 
 
 
 
 
731cb10
 
 
 
 
d72b2c3
a0ce150
e83a997
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731cb10
d72b2c3
 
731cb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
 
 
 
 
a0ce150
 
 
 
731cb10
 
 
a0ce150
e83a997
d72b2c3
 
 
 
 
731cb10
d72b2c3
731cb10
 
 
 
d72b2c3
e70ad00
731cb10
d72b2c3
731cb10
d72b2c3
 
 
731cb10
 
 
 
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731cb10
 
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
731cb10
 
 
 
 
a0ce150
731cb10
a0ce150
 
731cb10
 
 
 
 
 
 
 
 
 
 
 
a0ce150
d72b2c3
731cb10
d72b2c3
 
e83a997
d72b2c3
731cb10
 
d72b2c3
2e6c69d
 
 
731cb10
 
 
d72b2c3
 
 
 
a0ce150
d72b2c3
a84b206
d72b2c3
60fbcf9
 
 
 
731cb10
60fbcf9
d72b2c3
 
731cb10
 
 
 
d72b2c3
 
6cb7713
60fbcf9
 
 
 
 
 
 
 
6cb7713
60fbcf9
 
6cb7713
60fbcf9
 
731cb10
60fbcf9
 
731cb10
d72b2c3
a0ce150
731cb10
a84b206
731cb10
e70ad00
2e6c69d
731cb10
 
2e6c69d
 
 
731cb10
2e6c69d
731cb10
 
 
 
d72b2c3
 
731cb10
2e6c69d
d72b2c3
731cb10
 
d72b2c3
731cb10
 
 
 
 
 
 
 
 
 
 
a0ce150
731cb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
731cb10
 
 
 
d72b2c3
 
 
731cb10
d72b2c3
 
731cb10
d72b2c3
 
731cb10
 
 
 
d72b2c3
a0ce150
731cb10
e70ad00
 
731cb10
 
 
 
 
e70ad00
e83a997
731cb10
a0ce150
731cb10
e83a997
731cb10
 
 
 
 
e83a997
731cb10
d72b2c3
 
 
a0ce150
731cb10
 
 
 
 
 
 
 
 
 
 
a0ce150
731cb10
6cb7713
a0ce150
731cb10
a0ce150
6cb7713
 
d72b2c3
 
731cb10
d72b2c3
 
731cb10
 
 
 
d72b2c3
 
 
731cb10
 
d72b2c3
 
 
 
 
 
 
731cb10
d72b2c3
731cb10
d72b2c3
 
 
 
 
 
 
 
731cb10
d72b2c3
 
a0ce150
731cb10
a0ce150
d72b2c3
731cb10
a0ce150
731cb10
 
d72b2c3
6cb7713
a0ce150
731cb10
d72b2c3
731cb10
a84b206
 
731cb10
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import typing as tp
from einops import rearrange
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint as torch_checkpoint
from xformers import ops


_efficient_attention_backend: str = 'torch'





def _get_attention_time_dimension(memory_efficient: bool) -> int:
    if _efficient_attention_backend == 'torch' and memory_efficient:
        return 2
    else:
        return 1



def create_sin_embedding(positions: torch.Tensor, dim: int, max_period: float = 10000,
                         dtype: torch.dtype = torch.float32) -> torch.Tensor:
    """Create sinusoidal positional embedding, with shape `[B, T, C]`.

    Args:
        positions (torch.Tensor): LongTensor of positions.
        dim (int): Dimension of the embedding.
        max_period (float): Maximum period of the cosine/sine functions.
        dtype (torch.dtype or str): dtype to use to generate the embedding.
    Returns:
        torch.Tensor: Sinusoidal positional embedding.
    """
    # We aim for BTC format
    assert dim % 2 == 0
    half_dim = dim // 2
    positions = positions.to(dtype)
    adim = torch.arange(half_dim, device=positions.device, dtype=dtype).view(1, 1, -1)
    max_period_tensor = torch.full([], max_period, device=positions.device, dtype=dtype)  # avoid sync point
    phase = positions / (max_period_tensor ** (adim / (half_dim - 1)))
    return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1)


def expand_repeated_kv(x: torch.Tensor, n_rep: int, memory_efficient: bool) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep) from xlformers."""
    if n_rep == 1:
        return x
    if _efficient_attention_backend == 'torch' and memory_efficient:
        bs, n_kv_heads, slen, head_dim = x.shape
        return (
            x[:, :, None, :, :]
            .expand(bs, n_kv_heads, n_rep, slen, head_dim)
            .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
        )
    else:
        bs, slen, n_kv_heads, head_dim = x.shape
        return (
            x[:, :, :, None, :]
            .expand(bs, slen, n_kv_heads, n_rep, head_dim)
            .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
        )





class StreamingMultiheadAttention(nn.Module):

    def __init__(self, 
                 embed_dim, 
                 num_heads, dropout: float = 0.0, bias: bool = True,
                 causal: bool = False, past_context: tp.Optional[int] = None, custom: bool = False,
                 memory_efficient: bool = False, attention_as_float32: bool = False,
                 cross_attention: bool = False,
                 kv_repeat: int = 1,
                 device=None, dtype=None):
        super().__init__()
        factory_kwargs = {'device': device, 'dtype': dtype}
        if past_context is not None:
            assert causal

        self.embed_dim = embed_dim
        
        self.k_history = None  # previous k from the previous tokens seen in the current generation - only for selt.attn
        self.v_history = None  # clean up IN LM after finishing GENERATION - Each 1...47 mha has different kv history
        
        self.memory_efficient = memory_efficient
        
        
        self.cross_attention = cross_attention
        
        self.num_heads = num_heads
        self.dropout = dropout
        self.kv_repeat = kv_repeat
        



        self.custom = True #_is_custom(custom, memory_efficient)
        if not self.custom:
            print(f'{self.custom}')
        if self.custom:
            out_dim = embed_dim
            assert num_heads % kv_repeat == 0
            assert not cross_attention or kv_repeat == 1
            num_kv = num_heads // kv_repeat
            kv_dim = (embed_dim // num_heads) * num_kv
            out_dim += 2 * kv_dim
            in_proj = nn.Linear(embed_dim, out_dim, bias=bias, **factory_kwargs)
            # We try to follow the default PyTorch MHA convention, to easily compare results.
            self.in_proj_weight = in_proj.weight
            self.in_proj_bias = in_proj.bias
            if bias:
                self.in_proj_bias.data.zero_()  # Following Pytorch convention
            self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
            if bias:
                self.out_proj.bias.data.zero_()
        else:
            assert kv_repeat == 1
            self.mha = nn.MultiheadAttention(
                embed_dim, num_heads, dropout=dropout, bias=bias, batch_first=True,
                **factory_kwargs)
        

    def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
        if not self.custom:
            # Support compat with regular MHA
            keys = [n for n, _ in self.mha.named_parameters()]
            for key in keys:
                if prefix + key in state_dict:
                    state_dict[prefix + "mha." + key] = state_dict.pop(prefix + key)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)

    



    

    def forward(self, 
                query, 
                key=None,   # ignores those 2 args if not self.cross_attn 
                value=None):
        

        # time_dim = _get_attention_time_dimension(self.memory_efficient)
        # if time_dim == 2:
        layout = "b h t d"
        # else:
        #     layout = "b t h d"
        # dtype = query.dtype
        

        

        

        if self.custom:

            if self.cross_attention:
                # Different queries, keys, values, we have to spit manually the weights
                # before applying the linear.
                dim = self.in_proj_weight.shape[0] // 3
                if self.in_proj_bias is None:
                    bias_q, bias_k, bias_v = None, None, None
                else:
                    bias_q = self.in_proj_bias[:dim]
                    bias_k = self.in_proj_bias[dim: 2 * dim]
                    bias_v = self.in_proj_bias[2 * dim:]
                q = nn.functional.linear(query, self.in_proj_weight[:dim], bias_q)
                # todo: when streaming, we could actually save k, v and check the shape actually match.
                k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim], bias_k)
                v = nn.functional.linear(value, self.in_proj_weight[2 * dim:], bias_v)
                
                q, k, v = [rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k, v]]
                # print(q.shape, k.shape, v.shape, q.sum(), k.sum(), v.sum(),'CROSS A5')
            else:
                # 1st projected makes k,v (instantaneous)
                # 2nd cat
                
                
                # HISTORY - DIFFERENT FOR EACH TRANSF LAYER
        
                projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
                if self.kv_repeat == 1:
                    # if time_dim == 2:
                    bound_layout = "b h p t d"
                    # else:
                    #     bound_layout = "b t p h d"
                    packed = rearrange(projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
                    q, k, v = ops.unbind(packed, dim=2)

                    
                if self.k_history is not None:
                    # 
                    # pk.shape=torch.Size([2, 24, 3, 64]) k.shape=torch.Size([2, 24, 1, 64]) CONCAT
                    # has to be 4D with batch 1 due to single condition 3=seqlen
                    # 24 heads 64 dimofh
                    self.k_history = torch.cat([self.k_history, k], 2)
                    self.v_history = torch.cat([self.v_history, v], 2)

                else:
                    # init on 1st token (for all 47 transf layers)
                    print(f'else skip')
                    self.k_history = k
                    self.v_history = v    
                
                k = self.k_history
                v = self.v_history


                
                # KV COMPLETION ONLY ON SELF ATTENTION
                # print('KV5', self.k_history.sum(), self.v_history.sum(), self.k_history.shape, self.v_history.shape)
                
            
            if self.memory_efficient:
                # print('EVER IN MEMORY EFFICIENT A')
                

                p = self.dropout if self.training else 0
                if _efficient_attention_backend == 'torch':
                    # print(q.shape, k.shape, v.shape, q.sum(), k.sum(), v.sum(), 'CROSSopen')
                    x = torch.nn.functional.scaled_dot_product_attention(
                        q, k, v, is_causal=False, dropout_p=p
                    )
            
            x = x.to(q.dtype)
            x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
            x = self.out_proj(x)
        return x


class StreamingTransformerLayer(nn.Module): #nn.TransformerEncoderLayer):
    # INHERITS MHA !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    def __init__(self, 
                 d_model: int, 
                 num_heads: int, 
                 dim_feedforward: int = 2048, 
                 dropout: float = 0.1,
                 bias_ff: bool = True, 
                 bias_attn: bool = True, 
                 custom: bool = False,
                 memory_efficient: bool = False, 
                 attention_as_float32: bool = False,
                 cross_attention: bool = False, 
                 attention_dropout: tp.Optional[float] = None,
                 kv_repeat: int = 1,
                 norm: str = 'layer_norm', 
                 device=None,
                 dtype=None, 
                 **kwargs):
        
        
        super().__init__() #d_model, num_heads, dim_feedforward, dropout,
                         #device=device, dtype=dtype, batch_first=True, **kwargs)
        # print(kwargs['activation'], 'ACTIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII\n\n\n\n')                         
        # -- EN Layer
        # DOES NOT INHERIT NO VARIABLE FROM nn.TransformerEncoderLayer only the _sa_block function
        
        # -- EN layer
        
        factory_kwargs = {'device': device, 'dtype': dtype}
        # Redefine self_attn to our streaming multi-head attention
        attn_kwargs: tp.Dict[str, tp.Any] = {
            'embed_dim': d_model,
            'num_heads': num_heads,
            'dropout': dropout if attention_dropout is None else attention_dropout,
            'bias': bias_attn,
            'custom': custom,
            'memory_efficient': memory_efficient,
            'attention_as_float32': attention_as_float32,
        }
        self.self_attn = StreamingMultiheadAttention(
            kv_repeat=kv_repeat, 
            **attn_kwargs, 
            **factory_kwargs)  # type: ignore
        # Redefine feedforward layers to expose bias parameter
        self.linear1 = nn.Linear(d_model, dim_feedforward, bias=bias_ff, **factory_kwargs)
        self.linear2 = nn.Linear(dim_feedforward, d_model, bias=bias_ff, **factory_kwargs)
        # print('LAYER scale', layer_scale, '\n\n\n\n\n\n\n\n\n')   # always


        self.cross_attention= None
        if cross_attention:
            self.cross_attention = StreamingMultiheadAttention(
                cross_attention=True,
                **attn_kwargs, 
                **factory_kwargs)
            
            self.dropout_cross = nn.Dropout(dropout)
            
            self.norm_cross = nn.LayerNorm(d_model, eps=1e-5, **factory_kwargs)        
        self.norm1 = nn.LayerNorm(d_model, eps=1e-5)
        self.norm2 = nn.LayerNorm(d_model, eps=1e-5)


    def forward(self,
                src,
                cross_attention_src=None):  # txtcond
        '''T is saved float16 weights - should we cast src to float16'''
        
        x = src
        
        x = x + self.self_attn(self.norm1(x))
        
        if cross_attention_src is not None:
            x = x + self.cross_attention(
                                    query = self.norm_cross(x), 
                                    key   = cross_attention_src, 
                                    value = cross_attention_src)  # txtcondition
        
        x = x + self.linear2(F.gelu(self.linear1(   self.norm2(x)    )))
        return x


class StreamingTransformer(nn.Module):

    def __init__(self, d_model: int, 
                 num_heads: int, 
                 num_layers: int, 
                 dim_feedforward: int = 2048,
                 dropout: float = 0.1, 
                 bias_ff: bool = True, 
                 bias_attn: bool = True,
                 custom: bool = False, 
                 memory_efficient: bool = False, 
                 attention_as_float32: bool = False,
                 cross_attention: bool = False,
                 positional_embedding: str = 'sin', 
                 max_period: float = 10_000,
                 layer_class=StreamingTransformerLayer,
                 checkpointing: str = 'none', 
                 device=None, 
                 dtype=None, 
                 **kwargs):
        super().__init__()
        assert d_model % num_heads == 0

        self.positional_embedding = positional_embedding
        self.max_period = max_period
        

        
        # self._stream_off = 0  # the llm should reinitialize this at ery generate()

        self.checkpointing = checkpointing

        
        

        self.layers = nn.ModuleList()
        for idx in range(num_layers):
            self.layers.append(
                layer_class(
                    d_model=d_model, num_heads=num_heads, dim_feedforward=dim_feedforward,
                    dropout=dropout, bias_ff=bias_ff, bias_attn=bias_attn,
                    custom=custom,
                    memory_efficient=memory_efficient, attention_as_float32=attention_as_float32,
                    cross_attention=cross_attention,
                    device=device, dtype=dtype, **kwargs))

        if self.checkpointing != 'none':
            for layer in self.layers:
                # see audiocraft/optim/fsdp.py, magic signal to indicate this requires fixing the
                # backward hook inside of FSDP...
                layer._magma_checkpointed = True  # type: ignore

    

    def forward(self, x: torch.Tensor, *args, **kwargs):
        
        B, T, C = x.shape
        

        if self.positional_embedding in ['sin', 'sin_rope']:
            
            positions = torch.arange(T, device=x.device).view(1, -1, 1)
            positions = positions + kwargs['token_count']  #offsets.view(-1, 1, 1)
            pos_emb = create_sin_embedding(positions, C, max_period=self.max_period, dtype=x.dtype)
            x = x + pos_emb
            
            

        for j, lay in enumerate(self.layers):
            # print(f'Transf Layer{j}      {pos_emb.sum()=} {pos_emb.shape=}{x.shape=}___________________')
            x = lay(x, cross_attention_src=kwargs["cross_attention_src"])  # cross_attention_src = txt-cond
            # each layer (mha) keeps history of its own k,v for all tokens
        return x