kv history @ each transf layer
Browse files- audiocraft/lm.py +20 -35
- audiocraft/transformer.py +212 -325
- demo.py +2 -2
audiocraft/lm.py
CHANGED
@@ -147,7 +147,7 @@ class LMModel(nn.Module):
|
|
147 |
super().__init__()
|
148 |
self.cfg_coef = cfg_coef
|
149 |
|
150 |
-
self.n_draw =
|
151 |
self.condition_provider = condition_provider
|
152 |
self.fuser = fuser
|
153 |
self.card = card # 2048 ?
|
@@ -235,19 +235,16 @@ class LMModel(nn.Module):
|
|
235 |
def forward(self,
|
236 |
sequence,
|
237 |
condition_tensors=None,
|
238 |
-
|
239 |
B, K, S = sequence.shape # linears are n_q
|
240 |
-
|
241 |
-
input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)])
|
242 |
-
|
243 |
-
|
244 |
# input_, cross_attention_input = self.fuser(input_, condition_tensors)
|
245 |
cross_attention_input = condition_tensors['description'][0]
|
246 |
-
# print(f'{input_.shape=} {cross_attention_input.shape=} FUSER LLM')
|
247 |
-
|
248 |
|
249 |
-
|
250 |
-
|
|
|
|
|
251 |
if self.out_norm:
|
252 |
out = self.out_norm(out)
|
253 |
# K = 2 because of llm producing 2 tokens?
|
@@ -323,38 +320,23 @@ class LMModel(nn.Module):
|
|
323 |
]
|
324 |
|
325 |
|
326 |
-
for offset in range(1, _gen_sequence.shape[2]):
|
327 |
-
|
328 |
-
|
329 |
-
# although this is empty contains -1 ?
|
330 |
-
|
331 |
-
|
332 |
|
333 |
|
334 |
-
# ====================== SAMPLE NEXT TOK
|
335 |
-
# next_token = self._sample_next_token(
|
336 |
-
# _gen_sequence[..., :offset],
|
337 |
-
# cfg_conditions) # [5, 4, 1]
|
338 |
-
# --
|
339 |
-
# def _sample_next_token(self,
|
340 |
-
# sequence,
|
341 |
-
# cfg_conditions):
|
342 |
-
model = self if self._fsdp is None else self._fsdp
|
343 |
|
344 |
-
logits = model(_gen_sequence[..., :offset],
|
345 |
-
condition_tensors=cfg_conditions)
|
346 |
-
# print(logits.shape, 'Next Logits') # [1, 4, 2, 2048] why 2 tokens on query
|
347 |
|
348 |
-
#
|
349 |
-
|
|
|
350 |
|
351 |
-
#
|
352 |
-
logits = logits[0, :, 0:1, :] # [1,4,2048]
|
353 |
next_token = utils.sample_top_k(logits, n_draw=self.n_draw) # [1,4,2048] logits
|
354 |
-
|
355 |
|
356 |
|
357 |
-
_gen_sequence[:, :, offset] = next_token[0, :, 0] #
|
358 |
|
359 |
duplicate_draw.append(next_token)
|
360 |
|
@@ -396,7 +378,10 @@ class LMModel(nn.Module):
|
|
396 |
# <=> CODES out_codes.shape=torch.Size([1, 4, 35]) 30 2024
|
397 |
|
398 |
|
399 |
-
|
400 |
|
|
|
|
|
|
|
|
|
401 |
|
402 |
return out_codes #
|
|
|
147 |
super().__init__()
|
148 |
self.cfg_coef = cfg_coef
|
149 |
|
150 |
+
self.n_draw = 8
|
151 |
self.condition_provider = condition_provider
|
152 |
self.fuser = fuser
|
153 |
self.card = card # 2048 ?
|
|
|
235 |
def forward(self,
|
236 |
sequence,
|
237 |
condition_tensors=None,
|
238 |
+
token_count=None):
|
239 |
B, K, S = sequence.shape # linears are n_q
|
240 |
+
input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)])
|
|
|
|
|
|
|
241 |
# input_, cross_attention_input = self.fuser(input_, condition_tensors)
|
242 |
cross_attention_input = condition_tensors['description'][0]
|
|
|
|
|
243 |
|
244 |
+
print(f'{input_.shape=}')
|
245 |
+
out = self.transformer(input_,
|
246 |
+
cross_attention_src=cross_attention_input,
|
247 |
+
token_count=token_count)
|
248 |
if self.out_norm:
|
249 |
out = self.out_norm(out)
|
250 |
# K = 2 because of llm producing 2 tokens?
|
|
|
320 |
]
|
321 |
|
322 |
|
323 |
+
for offset in range(1, _gen_sequence.shape[2]):
|
324 |
+
|
325 |
+
|
|
|
|
|
|
|
326 |
|
327 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
|
|
|
|
|
|
329 |
|
330 |
+
logits = self.forward(_gen_sequence[:, :, offset-1:offset], # bs/n_draw, 4, 1
|
331 |
+
condition_tensors=cfg_conditions,
|
332 |
+
token_count=offset)
|
333 |
|
334 |
+
# print(f'BEF {logits.shape=} BEF utils.SampleTop5') # AGREES 4 BEF logits.shape=torch.Size([1, 4, 1, 2048]) BEF utils.SampleTop5
|
|
|
335 |
next_token = utils.sample_top_k(logits, n_draw=self.n_draw) # [1,4,2048] logits
|
336 |
+
|
337 |
|
338 |
|
339 |
+
_gen_sequence[:, :, offset] = next_token[0, :, 0] # next_token=[1,4,6] gen_seq=[1, 4, 39]
|
340 |
|
341 |
duplicate_draw.append(next_token)
|
342 |
|
|
|
378 |
# <=> CODES out_codes.shape=torch.Size([1, 4, 35]) 30 2024
|
379 |
|
380 |
|
|
|
381 |
|
382 |
+
# Clean Transformer MHA k_history v_history
|
383 |
+
for lay in self.transformer.layers:
|
384 |
+
lay.self_attn.k_history = None
|
385 |
+
lay.self_attn.v_history = None
|
386 |
|
387 |
return out_codes #
|
audiocraft/transformer.py
CHANGED
@@ -3,26 +3,36 @@ from einops import rearrange
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from torch.nn import functional as F
|
|
|
6 |
from xformers import ops
|
7 |
|
|
|
8 |
_efficient_attention_backend: str = 'torch'
|
9 |
|
10 |
|
11 |
-
def set_efficient_attention_backend(backend: str = 'torch'):
|
12 |
-
# Using torch by default, it seems a bit faster on older P100 GPUs (~20% faster).
|
13 |
-
global _efficient_attention_backend
|
14 |
-
assert _efficient_attention_backend in ['xformers', 'torch']
|
15 |
-
_efficient_attention_backend = backend
|
16 |
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
-
def create_norm_fn(norm_type, dim, **kwargs):
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
if norm_type == 'layer_norm':
|
27 |
return nn.LayerNorm(dim, eps=1e-5, **kwargs)
|
28 |
else:
|
@@ -48,11 +58,27 @@ def create_sin_embedding(positions: torch.Tensor, dim: int, max_period: float =
|
|
48 |
adim = torch.arange(half_dim, device=positions.device, dtype=dtype).view(1, 1, -1)
|
49 |
max_period_tensor = torch.full([], max_period, device=positions.device, dtype=dtype) # avoid sync point
|
50 |
phase = positions / (max_period_tensor ** (adim / (half_dim - 1)))
|
51 |
-
|
52 |
-
return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1)
|
53 |
-
|
54 |
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
|
@@ -62,36 +88,37 @@ class StreamingMultiheadAttention(nn.Module):
|
|
62 |
|
63 |
def __init__(self,
|
64 |
embed_dim,
|
65 |
-
num_heads,
|
66 |
-
|
67 |
-
|
68 |
-
causal: bool = False,
|
69 |
-
past_context: tp.Optional[int] = None,
|
70 |
-
custom: bool = False,
|
71 |
-
memory_efficient: bool = False,
|
72 |
-
attention_as_float32: bool = False,
|
73 |
cross_attention: bool = False,
|
74 |
-
qk_layer_norm: bool = False,
|
75 |
kv_repeat: int = 1,
|
76 |
device=None, dtype=None):
|
77 |
super().__init__()
|
78 |
factory_kwargs = {'device': device, 'dtype': dtype}
|
79 |
if past_context is not None:
|
80 |
assert causal
|
|
|
81 |
self.embed_dim = embed_dim
|
82 |
-
|
83 |
-
self.
|
|
|
|
|
84 |
self.memory_efficient = memory_efficient
|
85 |
self.attention_as_float32 = attention_as_float32
|
|
|
86 |
self.cross_attention = cross_attention
|
|
|
87 |
self.num_heads = num_heads
|
88 |
self.dropout = dropout
|
89 |
self.kv_repeat = kv_repeat
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
self.custom = _is_custom(custom, memory_efficient)
|
|
|
|
|
95 |
if self.custom:
|
96 |
out_dim = embed_dim
|
97 |
assert num_heads % kv_repeat == 0
|
@@ -109,12 +136,11 @@ class StreamingMultiheadAttention(nn.Module):
|
|
109 |
if bias:
|
110 |
self.out_proj.bias.data.zero_()
|
111 |
else:
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
|
119 |
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
|
120 |
if not self.custom:
|
@@ -124,185 +150,140 @@ class StreamingMultiheadAttention(nn.Module):
|
|
124 |
if prefix + key in state_dict:
|
125 |
state_dict[prefix + "mha." + key] = state_dict.pop(prefix + key)
|
126 |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
127 |
|
|
|
128 |
def forward(self,
|
129 |
query,
|
130 |
-
key,
|
131 |
-
value
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
#
|
138 |
-
#
|
139 |
-
#
|
140 |
-
|
141 |
-
|
142 |
-
# 43
|
143 |
-
# ____________
|
144 |
-
# SELF
|
145 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 25, 64]) v.shape=torch.Size([2, 24, 25, 64]) CROSSSattn
|
146 |
-
# sa_ x.shape=torch.Size([2, 1, 1536])
|
147 |
-
|
148 |
-
# X
|
149 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 7, 64]) v.shape=torch.Size([2, 24, 7, 64]) CROSSSattn
|
150 |
-
# 44
|
151 |
-
# ____________
|
152 |
-
# SELF
|
153 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 25, 64]) v.shape=torch.Size([2, 24, 25, 64]) CROSSSattn
|
154 |
-
# sa_ x.shape=torch.Size([2, 1, 1536])
|
155 |
-
|
156 |
-
# X
|
157 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 7, 64]) v.shape=torch.Size([2, 24, 7, 64]) CROSSSattn
|
158 |
-
# 45
|
159 |
-
# ____________
|
160 |
-
# SELF
|
161 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 25, 64]) v.shape=torch.Size([2, 24, 25, 64]) CROSSSattn
|
162 |
-
# sa_ x.shape=torch.Size([2, 1, 1536])
|
163 |
-
|
164 |
-
# X
|
165 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 7, 64]) v.shape=torch.Size([2, 24, 7, 64]) CROSSSattn
|
166 |
-
# 46
|
167 |
-
# ____________
|
168 |
-
# SELF
|
169 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 25, 64]) v.shape=torch.Size([2, 24, 25, 64]) CROSSSattn
|
170 |
-
# sa_ x.shape=torch.Size([2, 1, 1536])
|
171 |
-
|
172 |
-
# X
|
173 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 7, 64]) v.shape=torch.Size([2, 24, 7, 64]) CROSSSattn
|
174 |
-
# 47
|
175 |
-
# ____________
|
176 |
-
# SELF
|
177 |
-
# q.shape=torch.Size([2, 24, 1, 64]) k.shape=torch.Size([2, 24, 25, 64]) v.shape=torch.Size([2, 24, 25, 64]) CROSSSattn
|
178 |
-
# sa_ x.shape=torch.Size([2, 1, 1536])
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
assert not is_causal, ("New param added in torch 2.0.1 not supported, "
|
184 |
-
"use the causal args in the constructor.")
|
185 |
-
# print(f'{query.shape=} {key.shape=} {value.shape=} MHA')
|
186 |
-
time_dim = 2
|
187 |
-
if time_dim == 2:
|
188 |
-
layout = "b h t d"
|
189 |
-
else:
|
190 |
-
layout = "b t h d"
|
191 |
-
dtype = query.dtype
|
192 |
|
193 |
|
194 |
-
|
195 |
|
196 |
if self.custom:
|
197 |
-
|
198 |
-
|
199 |
|
200 |
if self.cross_attention:
|
201 |
-
#
|
202 |
-
|
203 |
-
|
204 |
dim = self.in_proj_weight.shape[0] // 3
|
205 |
if self.in_proj_bias is None:
|
206 |
bias_q, bias_k, bias_v = None, None, None
|
207 |
else:
|
208 |
-
|
209 |
-
|
|
|
210 |
q = nn.functional.linear(query, self.in_proj_weight[:dim], bias_q)
|
211 |
-
# print(f'{q.shape=} TRANSF FORW who concaten')
|
212 |
# todo: when streaming, we could actually save k, v and check the shape actually match.
|
213 |
k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim], bias_k)
|
214 |
v = nn.functional.linear(value, self.in_proj_weight[2 * dim:], bias_v)
|
215 |
-
if self.qk_layer_norm is True:
|
216 |
-
q = self.q_layer_norm(q)
|
217 |
-
k = self.k_layer_norm(k)
|
218 |
|
219 |
q, k, v = [rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k, v]]
|
220 |
-
|
221 |
else:
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
|
224 |
if self.kv_repeat == 1:
|
225 |
-
if time_dim == 2:
|
226 |
-
|
227 |
-
else:
|
228 |
-
|
229 |
-
|
230 |
packed = rearrange(projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
|
231 |
-
|
232 |
-
|
233 |
-
# print(f'{query.shape=} before unbind') # [2, 1, 4 , 2048] already bs=2
|
234 |
q, k, v = ops.unbind(packed, dim=2)
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
print("ELSE kv rp")
|
239 |
|
240 |
-
if self.qk_layer_norm is True:
|
241 |
-
|
242 |
-
print('QL lay norm')
|
243 |
|
244 |
-
|
|
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
250 |
|
|
|
|
|
|
|
|
|
|
|
251 |
if self.memory_efficient:
|
252 |
-
|
253 |
-
|
254 |
-
print('CUSTOM ATTN MSK')
|
255 |
-
|
256 |
|
257 |
p = self.dropout if self.training else 0
|
258 |
if _efficient_attention_backend == 'torch':
|
259 |
-
|
260 |
-
# print(f'{q.shape=} {k.shape=} {v.shape=} 90')
|
261 |
-
print(f'{x.sum()=} {q.sum()=} {k.sum()=} {v.sum()=} 90 variation of qkv during 47')
|
262 |
-
# the k.sum(),v.sum() changes over the 47transfs how is that possible if self._sa
|
263 |
-
# has q-len = 1.
|
264 |
-
#
|
265 |
-
#
|
266 |
-
|
267 |
x = torch.nn.functional.scaled_dot_product_attention(
|
268 |
-
q, k, v, is_causal=
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
else:
|
275 |
-
|
276 |
-
print('CONSISTENCY ')
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
x = x.to(dtype)
|
282 |
x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
|
283 |
x = self.out_proj(x)
|
284 |
-
|
285 |
-
raise NotImplementedError
|
286 |
|
287 |
-
return x, None
|
288 |
|
|
|
|
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
memory_efficient: bool = False,
|
299 |
-
|
300 |
-
cross_attention: bool = False,
|
301 |
-
# rope=None,
|
302 |
attention_dropout: tp.Optional[float] = None,
|
303 |
-
kv_repeat: int = 1,
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
factory_kwargs = {'device': device, 'dtype': dtype}
|
307 |
# Redefine self_attn to our streaming multi-head attention
|
308 |
attn_kwargs: tp.Dict[str, tp.Any] = {
|
@@ -314,123 +295,84 @@ class StreamingTransformerLayer(nn.TransformerEncoderLayer):
|
|
314 |
'memory_efficient': memory_efficient,
|
315 |
'attention_as_float32': attention_as_float32,
|
316 |
}
|
317 |
-
self.self_attn=StreamingMultiheadAttention(
|
318 |
-
|
319 |
-
|
320 |
-
#
|
321 |
-
qk_layer_norm=qk_layer_norm,
|
322 |
-
kv_repeat=kv_repeat, **attn_kwargs, **factory_kwargs) # type: ignore
|
323 |
# Redefine feedforward layers to expose bias parameter
|
324 |
self.linear1 = nn.Linear(d_model, dim_feedforward, bias=bias_ff, **factory_kwargs)
|
325 |
self.linear2 = nn.Linear(dim_feedforward, d_model, bias=bias_ff, **factory_kwargs)
|
|
|
326 |
|
327 |
-
|
328 |
|
329 |
-
self.cross_attention
|
330 |
if cross_attention:
|
331 |
self.cross_attention = StreamingMultiheadAttention(
|
332 |
-
cross_attention=True,
|
333 |
-
**attn_kwargs,
|
334 |
-
|
|
|
335 |
self.dropout_cross = nn.Dropout(dropout)
|
336 |
-
# eps value matching that used in PyTorch reference implementation.
|
337 |
-
self.norm_cross = nn.LayerNorm(d_model, eps=1e-5, **factory_kwargs)
|
338 |
|
|
|
339 |
self.norm1 = create_norm_fn(norm, d_model, **factory_kwargs) # type: ignore
|
340 |
self.norm2 = create_norm_fn(norm, d_model, **factory_kwargs) # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
-
|
343 |
-
def _sa_block(self, q, k, v):
|
344 |
-
x = self.self_attn(q,
|
345 |
-
k,
|
346 |
-
v,
|
347 |
-
attn_mask=None,
|
348 |
-
key_padding_mask=None,
|
349 |
-
need_weights=False,
|
350 |
-
is_causal=None)[0]
|
351 |
-
return self.dropout1(x)
|
352 |
-
|
353 |
-
def _cross_attention_block(self,
|
354 |
-
src,
|
355 |
-
cross_attention_src):
|
356 |
|
357 |
-
|
358 |
-
x = self.cross_attention(
|
359 |
-
src, cross_attention_src, cross_attention_src, need_weights=False)[0]
|
360 |
-
return self.dropout_cross(x) # type: ignore
|
361 |
-
|
362 |
-
def forward(self,
|
363 |
-
src,
|
364 |
-
src_mask=None,
|
365 |
-
src_key_padding_mask=None, # key = value = looooong I think I pass them inversed
|
366 |
-
cross_attention_src=None):
|
367 |
-
|
368 |
-
|
369 |
|
370 |
-
if
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
# THIS IS COMPUTED with 1 timestep
|
376 |
-
# just before the call there is cat([past_k, k])
|
377 |
-
# Thus we just
|
378 |
-
x = x + self._sa_block(x, # THIS should be square as the history is updated
|
379 |
-
# then the -1 item of history goes to the text x text
|
380 |
-
#
|
381 |
-
history,
|
382 |
-
history)
|
383 |
-
print('crossattn')
|
384 |
-
if cross_attention_src is not None:
|
385 |
-
x = x + self._cross_attention_block(
|
386 |
-
self.norm_cross(x),
|
387 |
-
cross_attention_src)
|
388 |
-
|
389 |
-
else:
|
390 |
-
print('NOT IMPL')
|
391 |
-
|
392 |
-
|
393 |
-
x = x + self._ff_block(self.norm2(x))
|
394 |
-
else:
|
395 |
-
print('NLAST')
|
396 |
|
|
|
397 |
return x
|
398 |
-
|
399 |
-
|
400 |
|
401 |
|
402 |
class StreamingTransformer(nn.Module):
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
409 |
cross_attention: bool = False,
|
410 |
-
positional_embedding: str = 'sin',
|
411 |
-
|
412 |
-
|
413 |
-
weight_decay=None,
|
414 |
layer_class=StreamingTransformerLayer,
|
415 |
-
checkpointing='none',
|
416 |
device=None,
|
417 |
-
dtype=None,
|
418 |
-
**kwargs):
|
419 |
super().__init__()
|
420 |
assert d_model % num_heads == 0
|
421 |
-
|
422 |
self.positional_embedding = positional_embedding
|
423 |
self.max_period = max_period
|
424 |
self.positional_scale = positional_scale
|
425 |
-
|
426 |
-
|
|
|
|
|
427 |
|
428 |
-
assert positional_embedding in ['sin', 'rope', 'sin_rope']
|
429 |
self.checkpointing = checkpointing
|
430 |
|
431 |
-
|
432 |
-
|
433 |
-
_verify_xformers_internal_compat()
|
434 |
|
435 |
self.layers = nn.ModuleList()
|
436 |
for idx in range(num_layers):
|
@@ -438,90 +380,35 @@ class StreamingTransformer(nn.Module):
|
|
438 |
layer_class(
|
439 |
d_model=d_model, num_heads=num_heads, dim_feedforward=dim_feedforward,
|
440 |
dropout=dropout, bias_ff=bias_ff, bias_attn=bias_attn,
|
441 |
-
|
442 |
memory_efficient=memory_efficient, attention_as_float32=attention_as_float32,
|
443 |
-
cross_attention=cross_attention,
|
444 |
-
# rope=self.rope,
|
445 |
device=device, dtype=dtype, **kwargs))
|
446 |
|
447 |
if self.checkpointing != 'none':
|
448 |
-
print('Checkpointing????????????')
|
449 |
for layer in self.layers:
|
450 |
# see audiocraft/optim/fsdp.py, magic signal to indicate this requires fixing the
|
451 |
# backward hook inside of FSDP...
|
452 |
layer._magma_checkpointed = True # type: ignore
|
453 |
|
454 |
-
|
455 |
|
456 |
def forward(self, x: torch.Tensor, *args, **kwargs):
|
457 |
-
# print(f'{x.shape=} StreamingTransf') # [1, 1, 1536] Always no batch==2 here
|
458 |
-
# why is this called with time-len = 1? Shouldnt be called with context?
|
459 |
-
B, T, C = x.shape
|
460 |
-
|
461 |
|
|
|
462 |
|
463 |
|
464 |
-
if self.positional_embedding in ['sin',
|
465 |
-
'sin_rope']:
|
466 |
-
positions = torch.arange(T, device=x.device).view(1, -1, 1)
|
467 |
|
|
|
|
|
468 |
pos_emb = create_sin_embedding(positions, C, max_period=self.max_period, dtype=x.dtype)
|
469 |
x = x + self.positional_scale * pos_emb
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
# 47x transformer layers for frozen history
|
474 |
-
# -> history is updated by self._sa() althought her length is fixed
|
475 |
-
# -> the q that comes out of the text x text cross attn
|
476 |
-
# is given as q to the next lay's self._sa() with updated history
|
477 |
-
# ->
|
478 |
-
# ->
|
479 |
-
for _, lay in enumerate(self.layers):
|
480 |
-
print(f'_________________\n{_}')
|
481 |
-
# 1 q = last_token x history x history
|
482 |
-
# 2 next_token = q x text x text
|
483 |
|
484 |
-
|
485 |
-
x, history = lay(
|
486 |
-
x,
|
487 |
-
history=history, # only updated by self_attn (the cross sees only last token)
|
488 |
-
cross_attention_src=kwargs["cross_attention_src"],
|
489 |
-
src_mask=kwargs['src_mask']
|
490 |
-
) # x : [bs, 24, 37, 64]
|
491 |
-
return x
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
# special attention related function
|
497 |
-
|
498 |
-
def _verify_xformers_memory_efficient_compat():
|
499 |
-
try:
|
500 |
-
from xformers.ops import memory_efficient_attention, LowerTriangularMask # noqa
|
501 |
-
except ImportError:
|
502 |
-
raise ImportError(
|
503 |
-
"xformers is not installed. Please install it and try again.\n"
|
504 |
-
"To install on AWS and Azure, run \n"
|
505 |
-
"FORCE_CUDA=1 TORCH_CUDA_ARCH_LIST='8.0'\\\n"
|
506 |
-
"pip install -U git+https://[email protected]/fairinternal/xformers.git#egg=xformers\n"
|
507 |
-
"To install on FAIR Cluster, run \n"
|
508 |
-
"FORCE_CUDA=1 TORCH_CUDA_ARCH_LIST='6.0;7.0'\\\n"
|
509 |
-
"pip install -U git+https://[email protected]/fairinternal/xformers.git#egg=xformers\n")
|
510 |
-
|
511 |
-
|
512 |
-
def _verify_xformers_internal_compat():
|
513 |
-
try:
|
514 |
-
from xformers.checkpoint_fairinternal import checkpoint, _get_default_policy # noqa
|
515 |
-
except ImportError:
|
516 |
-
raise ImportError(
|
517 |
-
"Francisco's fairinternal xformers is not installed. Please install it and try again.\n"
|
518 |
-
"To install on AWS and Azure, run \n"
|
519 |
-
"FORCE_CUDA=1 TORCH_CUDA_ARCH_LIST='8.0'\\\n"
|
520 |
-
"pip install -U git+https://[email protected]/fairinternal/xformers.git#egg=xformers\n"
|
521 |
-
"To install on FAIR Cluster, run \n"
|
522 |
-
"FORCE_CUDA=1 TORCH_CUDA_ARCH_LIST='6.0;7.0'\\\n"
|
523 |
-
"pip install -U git+https://[email protected]/fairinternal/xformers.git#egg=xformers\n")
|
524 |
-
|
525 |
|
526 |
-
|
527 |
-
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from torch.nn import functional as F
|
6 |
+
from torch.utils.checkpoint import checkpoint as torch_checkpoint
|
7 |
from xformers import ops
|
8 |
|
9 |
+
|
10 |
_efficient_attention_backend: str = 'torch'
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
|
16 |
+
def _get_attention_time_dimension(memory_efficient: bool) -> int:
|
17 |
+
if _efficient_attention_backend == 'torch' and memory_efficient:
|
18 |
+
return 2
|
19 |
+
else:
|
20 |
+
return 1
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
+
def create_norm_fn(norm_type: str, dim: int, **kwargs) -> nn.Module:
|
27 |
+
"""Create normalization module for transformer encoder layer.
|
28 |
|
29 |
+
Args:
|
30 |
+
norm_type (str): Normalization method.
|
31 |
+
dim (int): Dimension of the normalized layer.
|
32 |
+
**kwargs (dict): Additional parameters for normalization layer.
|
33 |
+
Returns:
|
34 |
+
nn.Module: Normalization module.
|
35 |
+
"""
|
36 |
if norm_type == 'layer_norm':
|
37 |
return nn.LayerNorm(dim, eps=1e-5, **kwargs)
|
38 |
else:
|
|
|
58 |
adim = torch.arange(half_dim, device=positions.device, dtype=dtype).view(1, 1, -1)
|
59 |
max_period_tensor = torch.full([], max_period, device=positions.device, dtype=dtype) # avoid sync point
|
60 |
phase = positions / (max_period_tensor ** (adim / (half_dim - 1)))
|
61 |
+
return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1)
|
|
|
|
|
62 |
|
63 |
|
64 |
+
def expand_repeated_kv(x: torch.Tensor, n_rep: int, memory_efficient: bool) -> torch.Tensor:
|
65 |
+
"""torch.repeat_interleave(x, dim=2, repeats=n_rep) from xlformers."""
|
66 |
+
if n_rep == 1:
|
67 |
+
return x
|
68 |
+
if _efficient_attention_backend == 'torch' and memory_efficient:
|
69 |
+
bs, n_kv_heads, slen, head_dim = x.shape
|
70 |
+
return (
|
71 |
+
x[:, :, None, :, :]
|
72 |
+
.expand(bs, n_kv_heads, n_rep, slen, head_dim)
|
73 |
+
.reshape(bs, n_kv_heads * n_rep, slen, head_dim)
|
74 |
+
)
|
75 |
+
else:
|
76 |
+
bs, slen, n_kv_heads, head_dim = x.shape
|
77 |
+
return (
|
78 |
+
x[:, :, :, None, :]
|
79 |
+
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
80 |
+
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
81 |
+
)
|
82 |
|
83 |
|
84 |
|
|
|
88 |
|
89 |
def __init__(self,
|
90 |
embed_dim,
|
91 |
+
num_heads, dropout: float = 0.0, bias: bool = True,
|
92 |
+
causal: bool = False, past_context: tp.Optional[int] = None, custom: bool = False,
|
93 |
+
memory_efficient: bool = False, attention_as_float32: bool = False,
|
|
|
|
|
|
|
|
|
|
|
94 |
cross_attention: bool = False,
|
|
|
95 |
kv_repeat: int = 1,
|
96 |
device=None, dtype=None):
|
97 |
super().__init__()
|
98 |
factory_kwargs = {'device': device, 'dtype': dtype}
|
99 |
if past_context is not None:
|
100 |
assert causal
|
101 |
+
|
102 |
self.embed_dim = embed_dim
|
103 |
+
|
104 |
+
self.k_history = None # previous k from the previous tokens seen in the current generation - only for selt.attn
|
105 |
+
self.v_history = None # clean up IN LM after finishing GENERATION - Each 1...47 mha has different kv history
|
106 |
+
|
107 |
self.memory_efficient = memory_efficient
|
108 |
self.attention_as_float32 = attention_as_float32
|
109 |
+
|
110 |
self.cross_attention = cross_attention
|
111 |
+
|
112 |
self.num_heads = num_heads
|
113 |
self.dropout = dropout
|
114 |
self.kv_repeat = kv_repeat
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
self.custom = True #_is_custom(custom, memory_efficient)
|
120 |
+
if not self.custom:
|
121 |
+
print(f'{self.custom}')
|
122 |
if self.custom:
|
123 |
out_dim = embed_dim
|
124 |
assert num_heads % kv_repeat == 0
|
|
|
136 |
if bias:
|
137 |
self.out_proj.bias.data.zero_()
|
138 |
else:
|
139 |
+
assert kv_repeat == 1
|
140 |
+
self.mha = nn.MultiheadAttention(
|
141 |
+
embed_dim, num_heads, dropout=dropout, bias=bias, batch_first=True,
|
142 |
+
**factory_kwargs)
|
143 |
+
|
|
|
144 |
|
145 |
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
|
146 |
if not self.custom:
|
|
|
150 |
if prefix + key in state_dict:
|
151 |
state_dict[prefix + "mha." + key] = state_dict.pop(prefix + key)
|
152 |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
|
159 |
+
|
160 |
def forward(self,
|
161 |
query,
|
162 |
+
key=None, # ignores those 2 args if not self.cross_attn
|
163 |
+
value=None):
|
164 |
+
|
165 |
+
|
166 |
+
# time_dim = _get_attention_time_dimension(self.memory_efficient)
|
167 |
+
# if time_dim == 2:
|
168 |
+
layout = "b h t d"
|
169 |
+
# else:
|
170 |
+
# layout = "b t h d"
|
171 |
+
# dtype = query.dtype
|
172 |
+
|
173 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
|
176 |
+
|
177 |
|
178 |
if self.custom:
|
|
|
|
|
179 |
|
180 |
if self.cross_attention:
|
181 |
+
# Different queries, keys, values, we have to spit manually the weights
|
182 |
+
# before applying the linear.
|
|
|
183 |
dim = self.in_proj_weight.shape[0] // 3
|
184 |
if self.in_proj_bias is None:
|
185 |
bias_q, bias_k, bias_v = None, None, None
|
186 |
else:
|
187 |
+
bias_q = self.in_proj_bias[:dim]
|
188 |
+
bias_k = self.in_proj_bias[dim: 2 * dim]
|
189 |
+
bias_v = self.in_proj_bias[2 * dim:]
|
190 |
q = nn.functional.linear(query, self.in_proj_weight[:dim], bias_q)
|
|
|
191 |
# todo: when streaming, we could actually save k, v and check the shape actually match.
|
192 |
k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim], bias_k)
|
193 |
v = nn.functional.linear(value, self.in_proj_weight[2 * dim:], bias_v)
|
|
|
|
|
|
|
194 |
|
195 |
q, k, v = [rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k, v]]
|
|
|
196 |
else:
|
197 |
|
198 |
+
# HISTORY - DIFFERENT FOR EACH TRANSF LAYER
|
199 |
+
if self.k_history is not None:
|
200 |
+
#
|
201 |
+
# pk.shape=torch.Size([2, 24, 3, 64]) k.shape=torch.Size([2, 24, 1, 64]) CONCAT
|
202 |
+
# has to be 4D with batch 1 due to single condition 3=seqlen
|
203 |
+
# 24 heads 64 dimofh
|
204 |
+
self.k_history = torch.cat([self.k_history, query], 2)
|
205 |
+
self.v_history = torch.cat([self.v_history, query], 2)
|
206 |
+
else:
|
207 |
+
# init on 1st token (for all 47 transf layers)
|
208 |
+
self.k_history = query
|
209 |
+
self.v_history = query
|
210 |
+
|
211 |
+
|
212 |
projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
|
213 |
if self.kv_repeat == 1:
|
214 |
+
# if time_dim == 2:
|
215 |
+
bound_layout = "b h p t d"
|
216 |
+
# else:
|
217 |
+
# bound_layout = "b t p h d"
|
|
|
218 |
packed = rearrange(projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
|
|
|
|
|
|
|
219 |
q, k, v = ops.unbind(packed, dim=2)
|
220 |
+
|
221 |
+
|
|
|
|
|
222 |
|
|
|
|
|
|
|
223 |
|
224 |
+
# KV COMPLETION ONLY ON SELF ATTENTION
|
225 |
+
#======================================================
|
226 |
|
227 |
+
# so the previous layer passes you here the k,v having concatenated all previous
|
228 |
+
#
|
229 |
+
# also return those 2 for the next transformer layer
|
230 |
+
#
|
231 |
+
# also clean up after ending the transformer? NOOOOOOOOOOOOO is goes along tokens
|
232 |
+
#
|
233 |
+
# also why completekv does not grow longer during the 47 transformers but changes sum
|
234 |
|
235 |
+
# k, v = self._complete_kv(k, v)
|
236 |
+
# print(k.sum(), v.sum(), k.shape, v.shape,'ATTNext')
|
237 |
+
|
238 |
+
if self.attention_as_float32:
|
239 |
+
q, k, v = [x.float() for x in [q, k, v]]
|
240 |
if self.memory_efficient:
|
241 |
+
# print('EVER IN MEMORY EFFICIENT A')
|
242 |
+
|
|
|
|
|
243 |
|
244 |
p = self.dropout if self.training else 0
|
245 |
if _efficient_attention_backend == 'torch':
|
246 |
+
# print(q.shape, k.shape, v.shape, q.sum(), k.sum(), v.sum(), 'CROSSopen')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
x = torch.nn.functional.scaled_dot_product_attention(
|
248 |
+
q, k, v, is_causal=False, dropout_p=p
|
249 |
+
)
|
250 |
+
|
251 |
+
x = x.to(q.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
|
253 |
x = self.out_proj(x)
|
254 |
+
return x
|
|
|
255 |
|
|
|
256 |
|
257 |
+
class StreamingTransformerLayer(nn.Module): #nn.TransformerEncoderLayer):
|
258 |
+
# INHERITS MHA !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
259 |
|
260 |
+
def __init__(self,
|
261 |
+
d_model: int,
|
262 |
+
num_heads: int,
|
263 |
+
dim_feedforward: int = 2048,
|
264 |
+
dropout: float = 0.1,
|
265 |
+
bias_ff: bool = True,
|
266 |
+
bias_attn: bool = True,
|
267 |
+
custom: bool = False,
|
268 |
+
memory_efficient: bool = False,
|
269 |
+
attention_as_float32: bool = False,
|
270 |
+
cross_attention: bool = False,
|
|
|
271 |
attention_dropout: tp.Optional[float] = None,
|
272 |
+
kv_repeat: int = 1,
|
273 |
+
norm: str = 'layer_norm',
|
274 |
+
device=None,
|
275 |
+
dtype=None,
|
276 |
+
**kwargs):
|
277 |
+
|
278 |
+
|
279 |
+
super().__init__() #d_model, num_heads, dim_feedforward, dropout,
|
280 |
+
#device=device, dtype=dtype, batch_first=True, **kwargs)
|
281 |
+
# print(kwargs['activation'], 'ACTIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII\n\n\n\n')
|
282 |
+
# -- EN Layer
|
283 |
+
# DOES NOT INHERIT NO VARIABLE FROM nn.TransformerEncoderLayer only the _sa_block function
|
284 |
+
|
285 |
+
# -- EN layer
|
286 |
+
|
287 |
factory_kwargs = {'device': device, 'dtype': dtype}
|
288 |
# Redefine self_attn to our streaming multi-head attention
|
289 |
attn_kwargs: tp.Dict[str, tp.Any] = {
|
|
|
295 |
'memory_efficient': memory_efficient,
|
296 |
'attention_as_float32': attention_as_float32,
|
297 |
}
|
298 |
+
self.self_attn = StreamingMultiheadAttention(
|
299 |
+
kv_repeat=kv_repeat,
|
300 |
+
**attn_kwargs,
|
301 |
+
**factory_kwargs) # type: ignore
|
|
|
|
|
302 |
# Redefine feedforward layers to expose bias parameter
|
303 |
self.linear1 = nn.Linear(d_model, dim_feedforward, bias=bias_ff, **factory_kwargs)
|
304 |
self.linear2 = nn.Linear(dim_feedforward, d_model, bias=bias_ff, **factory_kwargs)
|
305 |
+
# print('LAYER scale', layer_scale, '\n\n\n\n\n\n\n\n\n') # always
|
306 |
|
|
|
307 |
|
308 |
+
self.cross_attention= None
|
309 |
if cross_attention:
|
310 |
self.cross_attention = StreamingMultiheadAttention(
|
311 |
+
cross_attention=True,
|
312 |
+
**attn_kwargs,
|
313 |
+
**factory_kwargs)
|
314 |
+
|
315 |
self.dropout_cross = nn.Dropout(dropout)
|
|
|
|
|
316 |
|
317 |
+
self.norm_cross = nn.LayerNorm(d_model, eps=1e-5, **factory_kwargs)
|
318 |
self.norm1 = create_norm_fn(norm, d_model, **factory_kwargs) # type: ignore
|
319 |
self.norm2 = create_norm_fn(norm, d_model, **factory_kwargs) # type: ignore
|
320 |
+
|
321 |
+
|
322 |
+
def forward(self,
|
323 |
+
src,
|
324 |
+
cross_attention_src=None): # txtcond
|
325 |
+
'''T layer'''
|
326 |
|
327 |
+
x = src
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
x = x + self.self_attn(self.norm1(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
+
if cross_attention_src is not None:
|
332 |
+
x = x + self.cross_attention(
|
333 |
+
query = self.norm_cross(x),
|
334 |
+
key = cross_attention_src,
|
335 |
+
value = cross_attention_src) # txtcondition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
+
x = x + self.linear2(F.gelu(self.linear1( self.norm2(x) )))
|
338 |
return x
|
|
|
|
|
339 |
|
340 |
|
341 |
class StreamingTransformer(nn.Module):
|
342 |
+
|
343 |
+
def __init__(self, d_model: int,
|
344 |
+
num_heads: int,
|
345 |
+
num_layers: int,
|
346 |
+
dim_feedforward: int = 2048,
|
347 |
+
dropout: float = 0.1,
|
348 |
+
bias_ff: bool = True,
|
349 |
+
bias_attn: bool = True,
|
350 |
+
custom: bool = False,
|
351 |
+
memory_efficient: bool = False,
|
352 |
+
attention_as_float32: bool = False,
|
353 |
cross_attention: bool = False,
|
354 |
+
positional_embedding: str = 'sin',
|
355 |
+
max_period: float = 10_000,
|
356 |
+
positional_scale: float = 1,
|
|
|
357 |
layer_class=StreamingTransformerLayer,
|
358 |
+
checkpointing: str = 'none',
|
359 |
device=None,
|
360 |
+
dtype=None, **kwargs):
|
|
|
361 |
super().__init__()
|
362 |
assert d_model % num_heads == 0
|
363 |
+
|
364 |
self.positional_embedding = positional_embedding
|
365 |
self.max_period = max_period
|
366 |
self.positional_scale = positional_scale
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
# self._stream_off = 0 # the llm should reinitialize this at ery generate()
|
371 |
|
|
|
372 |
self.checkpointing = checkpointing
|
373 |
|
374 |
+
|
375 |
+
|
|
|
376 |
|
377 |
self.layers = nn.ModuleList()
|
378 |
for idx in range(num_layers):
|
|
|
380 |
layer_class(
|
381 |
d_model=d_model, num_heads=num_heads, dim_feedforward=dim_feedforward,
|
382 |
dropout=dropout, bias_ff=bias_ff, bias_attn=bias_attn,
|
383 |
+
custom=custom,
|
384 |
memory_efficient=memory_efficient, attention_as_float32=attention_as_float32,
|
385 |
+
cross_attention=cross_attention,
|
|
|
386 |
device=device, dtype=dtype, **kwargs))
|
387 |
|
388 |
if self.checkpointing != 'none':
|
|
|
389 |
for layer in self.layers:
|
390 |
# see audiocraft/optim/fsdp.py, magic signal to indicate this requires fixing the
|
391 |
# backward hook inside of FSDP...
|
392 |
layer._magma_checkpointed = True # type: ignore
|
393 |
|
394 |
+
|
395 |
|
396 |
def forward(self, x: torch.Tensor, *args, **kwargs):
|
|
|
|
|
|
|
|
|
397 |
|
398 |
+
B, T, C = x.shape
|
399 |
|
400 |
|
401 |
+
if self.positional_embedding in ['sin', 'sin_rope']:
|
|
|
|
|
402 |
|
403 |
+
positions = torch.arange(T, device=x.device).view(1, -1, 1)
|
404 |
+
positions = positions + kwargs['token_count'] #offsets.view(-1, 1, 1)
|
405 |
pos_emb = create_sin_embedding(positions, C, max_period=self.max_period, dtype=x.dtype)
|
406 |
x = x + self.positional_scale * pos_emb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
|
408 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
+
for j, lay in enumerate(self.layers):
|
411 |
+
print(f'_________________________{j}___________________')
|
412 |
+
x = lay(x, cross_attention_src=kwargs["cross_attention_src"]) # txt cond
|
413 |
+
# each layer (mha) keeps history of its own k,v for all tokens
|
414 |
+
return x
|
demo.py
CHANGED
@@ -4,10 +4,10 @@ import numpy as np
|
|
4 |
|
5 |
print('\n\n\n\n___________________')
|
6 |
|
7 |
-
txt = 'dogs in the street'
|
8 |
|
9 |
sound_generator = AudioGen.get_pretrained('facebook/audiogen-medium')
|
10 |
-
sound_generator.set_generation_params(duration=.
|
11 |
|
12 |
x = sound_generator.generate([txt])[0].detach().cpu().numpy()[0, :]
|
13 |
x /= np.abs(x).max() + 1e-7
|
|
|
4 |
|
5 |
print('\n\n\n\n___________________')
|
6 |
|
7 |
+
txt = 'dogs barging in the street'
|
8 |
|
9 |
sound_generator = AudioGen.get_pretrained('facebook/audiogen-medium')
|
10 |
+
sound_generator.set_generation_params(duration=.46) # why is generating so long at 14 seconds
|
11 |
|
12 |
x = sound_generator.generate([txt])[0].detach().cpu().numpy()[0, :]
|
13 |
x /= np.abs(x).max() + 1e-7
|