Summary

Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.

Model Architecture:

  • Architecture: GPT2LMHeadModel
  • Total Parameters: 81,912,576
  • Data Type (dtype): torch.bfloat16
  • Model Size: 0.16 GB

Benchmark Metrics Comparison

| Metric | | | :--- |

Resource Usage Comparison

  • VRAM Use: 7.4246 GB

Distillation (Teacher -> Student) Architecture Difference:

  • Architecture: GPT2LMHeadModel -> GPT2LMHeadModel
  • Total Parameters: 124,439,808 -> 81,912,576
  • Data Type (dtype): torch.bfloat16 -> torch.bfloat16
  • Model Size: 0.24 GB -> 0.16 GB
Module Diff Details
--- teacher model modules
+++ student model modules
@@ -4,7 +4,7 @@
     (wpe): Embedding(1024, 768)
     (drop): Dropout(p=0.1, inplace=False)
     (h): ModuleList(
-      (0-11): 12 x GPT2Block(
+      (0-5): 6 x GPT2Block(
         (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
         (attn): GPT2FlashAttention2(
           (c_attn): Conv1D()

Train Dataset

Trained on 6,814,337 tokens from the wikimedia/wikipedia dataset.

  • Num Samples: 9,900
  • Subset: 20231101.en
  • Split: train

Training Objective

DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, projector=orthogonal))

Hyperparameters

The following hyperparameters were used during training:

Expand
  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • num_epochs: 1.0
  • distillation_objective: DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, projector=orthogonal))
  • lr_scheduler: <torch.optim.lr_scheduler.LambdaLR object at 0x7fd831746950>
  • student_model_name_or_path: None
  • student_config_name_or_path: distilbert/distilgpt2
  • student_model_config: None
  • reinitialize_weights: None
  • copy_teacher_modules: [('lm_head', False)]
  • student_model_as_bitnet: False
  • teacher_model_name_or_path: gpt2
  • teacher_load_in_8bit: False
  • teacher_load_in_4bit: False
  • dataset_uri: wikimedia/wikipedia
  • dataset_subset: 20231101.en
  • dataset_split: train
  • dataset_column_name: text
  • dataset_sample_size: 10000
  • dataset_test_size: 0.01
  • gradient_accumulation_steps: 1
  • weight_decay: 0.0
  • max_grad_norm: 1.0
  • warmup_ratio: 0
  • warmup_steps: 0
  • gradient_checkpointing: True

Framework Versions

  • Distily 0.4.1
  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 2.21.0
Downloads last month
5
Safetensors
Model size
81.9M params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for distily/distily_validate_extra_grad_stats

Finetuned
(599)
this model

Dataset used to train distily/distily_validate_extra_grad_stats