Summary

Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.

Model Architecture:

  • Architecture: GPT2LMHeadModel
  • Total Parameters: 81,912,576
  • Data Type (dtype): torch.bfloat16
  • Model Size: 0.16 GB
Student Model Details
GPT2LMHeadModel(
  (transformer): GPT2Model(
    (wte): Embedding(50257, 768)
    (wpe): Embedding(1024, 768)
    (drop): Dropout(p=0.1, inplace=False)
    (h): ModuleList(
      (0-5): 6 x GPT2Block(
        (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        (attn): GPT2FlashAttention2(
          (c_attn): Conv1D()
          (c_proj): Conv1D()
          (attn_dropout): Dropout(p=0.1, inplace=False)
          (resid_dropout): Dropout(p=0.1, inplace=False)
        )
        (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        (mlp): GPT2MLP(
          (c_fc): Conv1D()
          (c_proj): Conv1D()
          (act): NewGELUActivation()
          (dropout): Dropout(p=0.1, inplace=False)
        )
      )
    )
    (ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
  )
  (lm_head): Linear(in_features=768, out_features=50257, bias=False)
)

Resource Usage

  • Max Train VRAM Use: 15.2844 GB
  • Available VRAM: 23.6429 GB
  • GPUs:
    • 1x NVIDIA GeForce RTX 4090
  • CPUs: 128
  • CPU Memory: 503.5412 GB
  • CPU Memory Bandwidth: 3200 GB/s

Distillation (Teacher -> Student) Architecture Difference:

  • Architecture: GPT2LMHeadModel -> GPT2LMHeadModel
  • Total Parameters: 124,439,808 -> 81,912,576
  • Data Type (dtype): torch.bfloat16 -> torch.bfloat16
  • Model Size: 0.24 GB -> 0.16 GB
Module Diff Details
--- teacher model modules
+++ student model modules
@@ -4,7 +4,7 @@
     (wpe): Embedding(1024, 768)
     (drop): Dropout(p=0.1, inplace=False)
     (h): ModuleList(
-      (0-11): 12 x GPT2Block(
+      (0-5): 6 x GPT2Block(
         (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
         (attn): GPT2FlashAttention2(
           (c_attn): Conv1D()

Train Dataset

Trained on 521,334,462 tokens from the wikimedia/wikipedia dataset.

  • Num Samples: 990,000
  • Subset: 20231101.en
  • Split: train

Training Objective

DistillationObjective(
    logits_loss_component=LossComponent(
        weight=1,
        loss_fn='kl'
    ),
    hs_loss_component=LossComponent(
        weight=0
    ),
    attn_loss_component=LossComponent(
        weight=0
    )
)

Hyperparameters

The following hyperparameters were used during training:

Expand
  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • num_epochs: 1.0
  • distillation_objective: DistillationObjective( logits_loss_component=LossComponent( weight=1, loss_fn='kl' ), hs_loss_component=LossComponent( weight=0 ), attn_loss_component=LossComponent( weight=0 ) )
  • lr_scheduler: <torch.optim.lr_scheduler.LambdaLR object at 0x7facb65ee170>
  • student_model_name_or_path: None
  • student_config_name_or_path: distilbert/distilgpt2
  • student_model_config: None
  • reinitialize_weights: None
  • copy_teacher_modules: [('lm_head', False)]
  • student_model_as_bitnet: False
  • teacher_model_name_or_path: gpt2
  • teacher_load_in_8bit: False
  • teacher_load_in_4bit: False
  • dataset_uri: wikimedia/wikipedia
  • dataset_subset: 20231101.en
  • dataset_split: train
  • dataset_column_name: text
  • dataset_sample_size: 1000000
  • dataset_test_size: 0.01
  • gradient_accumulation_steps: 1
  • weight_decay: 0.0
  • max_grad_norm: 1.0
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • gradient_checkpointing: True

Framework Versions

  • Distily 0.5.0
  • Transformers 4.44.2
  • Pytorch 2.5.0.dev20240905+cu121
  • Datasets 2.18.0
Downloads last month
107
Safetensors
Model size
81.9M params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for distily/distily_attn_mlp_sweep

Finetuned
(1327)
this model

Dataset used to train distily/distily_attn_mlp_sweep