metadata
license: cc-by-4.0
language:
- he
DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew
State-of-the-art language model for Hebrew, as released [here](link to arxiv).
This is the base model pretrained with the masked-language-modeling objective.
Sample usage:
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert')
model = AutoModelForMaskedLM.from_pretrained('dicta-il/dictabert')
model.eval()
sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 [MASK] 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'
output = model(tokenizer.encode(sentence, return_tensors='pt'))
# the [MASK] is the 7th token (including [CLS])
import torch
top_2 = torch.topk(output.logits[0, 7, :], 2)[1]
print('\n'.join(tokenizer.convert_ids_to_tokens(top_2))) # should print 诪讞拽专讜 / 讛转诪讞讜转讜
Citation
If you use DictaBERT in your research, please cite DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew
BibTeX:
To add
License
This work is licensed under a Creative Commons Attribution 4.0 International License.