DictaBERT-Tiny: A State-of-the-Art BERT-Large Suite for Modern Hebrew

State-of-the-art language model for Hebrew, released here.

This is the BERT-tiny base model pretrained with the masked-language-modeling objective.

For the bert models for other tasks, see here.

Sample usage:

from transformers import AutoModelForMaskedLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-tiny')
model = AutoModelForMaskedLM.from_pretrained('dicta-il/dictabert-tiny')

model.eval()

sentence = 'בשנת 1948 השלים אפרים קישון את [MASK] בפיסול מתכת ובתולדות האמנות והחל לפרסם מאמרים הומוריסטיים'

output = model(tokenizer.encode(sentence, return_tensors='pt'))
# the [MASK] is the 7th token (including [CLS])
import torch
top_2 = torch.topk(output.logits[0, 7, :], 2)[1]
print('\n'.join(tokenizer.convert_ids_to_tokens(top_2))) # should print עבודתו / התמחותו 

Citation

If you use DictaBERT in your research, please cite DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

BibTeX:

@misc{shmidman2023dictabert,
      title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew}, 
      author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
      year={2023},
      eprint={2308.16687},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0

Downloads last month
138
Safetensors
Model size
44.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including dicta-il/dictabert-tiny