dictabert-large / README.md
Shaltiel's picture
Update README.md
cd2cf31 verified
|
raw
history blame
1.97 kB
---
license: cc-by-4.0
language:
- he
---
# DictaBERT-Large: A State-of-the-Art BERT-Large Suite for Modern Hebrew
State-of-the-art language model for Hebrew, released [here](https://arxiv.org/abs/2308.16687).
This is the BERT-large base model pretrained with the masked-language-modeling objective.
For the bert-base models for other tasks, see [here](https://huggingface.co/collections/dicta-il/dictabert-6588e7cc08f83845fc42a18b).
Sample usage:
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-large')
model = AutoModelForMaskedLM.from_pretrained('dicta-il/dictabert-large')
model.eval()
sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 [MASK] 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'
output = model(tokenizer.encode(sentence, return_tensors='pt'))
# the [MASK] is the 7th token (including [CLS])
import torch
top_2 = torch.topk(output.logits[0, 7, :], 2)[1]
print('\n'.join(tokenizer.convert_ids_to_tokens(top_2))) # should print 诇讬诪讜讚讬讜 / 诪讞拽专讬讜
```
## Citation
If you use DictaBERT in your research, please cite ```DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew```
**BibTeX:**
```bibtex
@misc{shmidman2023dictabert,
title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew},
author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
year={2023},
eprint={2308.16687},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
Shield: [![CC BY 4.0][cc-by-shield]][cc-by]
This work is licensed under a
[Creative Commons Attribution 4.0 International License][cc-by].
[![CC BY 4.0][cc-by-image]][cc-by]
[cc-by]: http://creativecommons.org/licenses/by/4.0/
[cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png
[cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg