See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8ac21893b3a8deee_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8ac21893b3a8deee_train_data.json
type:
field_instruction: question
field_output: cypher
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: diaenra/d2ce33a8-5244-4590-91a3-9d907e2a3b25
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GB
micro_batch_size: 4
mlflow_experiment_name: /tmp/8ac21893b3a8deee_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: diaenra-tao-miner
wandb_mode: online
wandb_name: 40258dbe-8f5b-4b6c-8f78-0a48fa9aafb0
wandb_project: tao
wandb_run: diaenra
wandb_runid: 40258dbe-8f5b-4b6c-8f78-0a48fa9aafb0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: true
d2ce33a8-5244-4590-91a3-9d907e2a3b25
This model is a fine-tuned version of unsloth/SmolLM-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0 | 0.9993 | 1311 | nan |
0.0 | 1.9992 | 2622 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for diaenra/d2ce33a8-5244-4590-91a3-9d907e2a3b25
Base model
HuggingFaceTB/SmolLM-360M
Quantized
HuggingFaceTB/SmolLM-360M-Instruct
Finetuned
unsloth/SmolLM-360M-Instruct