ASR_dear_wav2vec2-thai

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3333
  • Wer: 0.3905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.8205 0.75 1000 3.5802 1.0
1.9581 1.5 2000 0.6882 0.7315
0.9012 2.24 3000 0.5229 0.6245
0.7558 2.99 4000 0.4531 0.5812
0.6671 3.74 5000 0.4277 0.5305
0.6083 4.49 6000 0.4067 0.5234
0.5633 5.24 7000 0.3821 0.4831
0.5335 5.98 8000 0.3682 0.4928
0.5021 6.73 9000 0.3578 0.4568
0.4806 7.48 10000 0.3508 0.4609
0.4554 8.23 11000 0.3518 0.4458
0.4361 8.98 12000 0.3375 0.4430
0.411 9.72 13000 0.3363 0.4269
0.3998 10.47 14000 0.3382 0.4221
0.3851 11.22 15000 0.3351 0.4161
0.3713 11.97 16000 0.3353 0.4106
0.3539 12.72 17000 0.3287 0.4084
0.3468 13.46 18000 0.3282 0.4098
0.3369 14.21 19000 0.3278 0.4015
0.3276 14.96 20000 0.3285 0.3968
0.3207 15.71 21000 0.3322 0.3980
0.31 16.45 22000 0.3379 0.3948
0.3043 17.2 23000 0.3264 0.3938
0.2975 17.95 24000 0.3299 0.3933
0.2959 18.7 25000 0.3299 0.3918
0.2898 19.45 26000 0.3333 0.3905

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
88
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.