wav2vec2-xls-r-2b-faroese-100h-30-epochs_v20250102

This model is a fine-tuned version of facebook/wav2vec2-xls-r-2b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1139
  • Wer: 18.6633
  • Cer: 4.0333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.8998 0.4877 1000 0.4521 49.7995 14.9781
1.4942 0.9754 2000 0.2517 33.0440 8.5873
1.6019 1.4628 3000 0.2145 30.8631 7.8267
1.306 1.9505 4000 0.2134 30.9028 7.9183
0.693 2.4379 5000 0.2248 31.6165 8.2299
0.7777 2.9256 6000 0.2083 30.8102 7.9735
0.7026 3.4131 7000 0.2166 31.1054 8.1226
0.6333 3.9008 8000 0.2145 30.4534 7.9135
0.5643 4.3882 9000 0.1924 28.5897 7.2910
0.5885 4.8759 10000 0.1930 29.0038 7.4007
0.5157 5.3633 11000 0.1756 27.6953 6.9470
0.4751 5.8510 12000 0.1788 27.1754 6.9241
0.398 6.3385 13000 0.1640 27.0917 6.6843
0.4065 6.8261 14000 0.1658 27.3560 6.8445
0.3841 7.3136 15000 0.1619 26.1665 6.4294
0.3785 7.8013 16000 0.1623 25.7347 6.3434
0.3045 8.2887 17000 0.1600 25.5452 6.2559
0.345 8.7764 18000 0.1502 25.3029 6.1770
0.2431 9.2638 19000 0.1517 24.7786 6.0634
0.2758 9.7515 20000 0.1484 24.3556 5.8432
0.2415 10.2390 21000 0.1461 23.8225 5.7959
0.2328 10.7267 22000 0.1413 23.6155 5.6744
0.229 11.2141 23000 0.1379 23.6727 5.5450
0.2182 11.7018 24000 0.1402 23.3819 5.5253
0.1979 12.1892 25000 0.1357 23.1617 5.4582
0.1805 12.6769 26000 0.1327 22.5228 5.3162
0.1813 13.1644 27000 0.1268 22.6990 5.2744
0.1841 13.6520 28000 0.1329 22.3642 5.2428
0.1683 14.1395 29000 0.1303 22.3862 5.1955
0.1686 14.6272 30000 0.1257 22.3422 5.1892
0.1472 15.1146 31000 0.1294 22.1880 5.1410
0.1436 15.6023 32000 0.1221 21.5403 4.9414
0.1349 16.0897 33000 0.1228 21.5755 4.9493
0.1234 16.5774 34000 0.1316 21.6240 4.9927
0.1248 17.0649 35000 0.1181 21.2936 4.8215
0.1241 17.5525 36000 0.1212 21.3817 4.8886
0.1033 18.0400 37000 0.1347 21.5932 4.9619
0.0939 18.5277 38000 0.1245 21.2187 4.8325
0.0985 19.0151 39000 0.1173 20.9191 4.7063
0.0899 19.5028 40000 0.1282 20.8530 4.7284
0.0895 19.9905 41000 0.1322 20.8089 4.6676
0.0968 20.4779 42000 0.1202 20.4785 4.5532
0.0905 20.9656 43000 0.1241 20.4785 4.5777
0.0832 21.4531 44000 0.1160 20.3199 4.5438
0.0958 21.9407 45000 0.1193 20.1172 4.4467
0.0689 22.4282 46000 0.1152 19.8440 4.3970
0.0724 22.9159 47000 0.1173 19.8705 4.3781
0.0714 23.4033 48000 0.1147 19.8352 4.3994
0.0645 23.8910 49000 0.1165 19.4475 4.3047
0.0659 24.3784 50000 0.1181 19.6766 4.3355
0.0503 24.8661 51000 0.1168 19.4123 4.2487
0.0619 25.3536 52000 0.1147 19.0598 4.1800
0.0589 25.8413 53000 0.1165 19.2008 4.1879
0.0574 26.3287 54000 0.1152 19.0201 4.1516
0.0475 26.8164 55000 0.1109 18.9849 4.1185
0.0437 27.3038 56000 0.1191 19.0378 4.1469
0.0465 27.7915 57000 0.1170 18.9276 4.1153
0.0514 28.2790 58000 0.1144 18.8571 4.0972
0.0481 28.7666 59000 0.1114 18.6589 4.0270
0.0586 29.2541 60000 0.1120 18.6677 4.0428
0.057 29.7418 61000 0.1139 18.6633 4.0333

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
2.16B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davidilag/wav2vec2-xls-r-2b-faroese-100h-30-epochs_v20250102

Finetuned
(4)
this model