wav2vec2-xls-r-1b-faroese-100h-60-epochs_20250108_v2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1007
  • Wer: 17.8878
  • Cer: 3.7595

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6000
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.1701 0.4877 1000 0.5709 57.8975 16.8346
1.5743 0.9754 2000 0.2891 35.4716 9.5767
1.6826 1.4628 3000 0.2146 31.1935 7.9814
0.8048 1.9505 4000 0.1991 30.5723 7.6334
0.6164 2.4379 5000 0.1955 29.4444 7.2926
0.6634 2.9256 6000 0.2030 30.5062 7.6958
0.6219 3.4131 7000 0.1829 28.6249 7.1664
0.5801 3.9008 8000 0.1784 27.6248 6.8776
0.5412 4.3882 9000 0.1776 27.2988 6.8658
0.5376 4.8759 10000 0.1672 26.7128 6.5746
0.4783 5.3633 11000 0.1622 26.3603 6.5194
0.4606 5.8510 12000 0.1589 25.6245 6.3332
0.3984 6.3385 13000 0.1458 25.2148 6.1423
0.402 6.8261 14000 0.1441 24.9548 6.0973
0.3887 7.3136 15000 0.1483 24.8711 6.0918
0.3614 7.8013 16000 0.1456 24.4570 5.8843
0.3017 8.2887 17000 0.1444 24.2191 5.7754
0.3353 8.7764 18000 0.1461 24.7522 5.9237
0.2625 9.2638 19000 0.1484 24.1398 5.7296
0.2877 9.7515 20000 0.1371 23.8005 5.6720
0.264 10.2390 21000 0.1393 23.5141 5.6483
0.2624 10.7267 22000 0.1295 23.3643 5.5103
0.253 11.2141 23000 0.1373 23.6155 5.6065
0.2437 11.7018 24000 0.1323 23.0295 5.4069
0.2239 12.1892 25000 0.1388 22.9854 5.4716
0.2214 12.6769 26000 0.1283 22.8268 5.3241
0.2106 13.1644 27000 0.1247 22.6418 5.2799
0.2085 13.6520 28000 0.1257 22.3642 5.2610
0.1856 14.1395 29000 0.1339 22.6638 5.3051
0.1815 14.6272 30000 0.1277 22.1351 5.1844
0.1811 15.1146 31000 0.1284 21.8839 5.0803
0.1737 15.6023 32000 0.1326 22.4611 5.2862
0.1534 16.0897 33000 0.1224 21.7297 5.0116
0.1512 16.5774 34000 0.1322 21.9324 5.1174
0.1466 17.0649 35000 0.1306 21.6152 5.0637
0.1664 17.5525 36000 0.1278 22.0866 5.1229
0.1421 18.0400 37000 0.1358 21.6857 5.0235
0.1283 18.5277 38000 0.1299 21.6108 4.9801
0.1338 19.0151 39000 0.1286 21.3508 4.8917
0.1273 19.5028 40000 0.1286 21.3332 4.9201
0.1376 19.9905 41000 0.1193 21.3641 4.9075
0.1469 20.4779 42000 0.1240 21.2715 4.8878
0.1301 20.9656 43000 0.1238 21.3685 4.9469
0.1106 21.4531 44000 0.1253 20.9807 4.7726
0.1579 21.9407 45000 0.1157 20.9279 4.7742
0.1045 22.4282 46000 0.1338 21.0380 4.8680
0.1142 22.9159 47000 0.1170 20.4520 4.6369
0.1096 23.4033 48000 0.1214 20.5842 4.6471
0.1229 23.8910 49000 0.1178 20.9058 4.7197
0.119 24.3784 50000 0.1193 20.7560 4.7102
0.1006 24.8661 51000 0.1217 20.5446 4.6929
0.1178 25.3536 52000 0.1132 20.3419 4.5872
0.1138 25.8413 53000 0.1135 20.5842 4.6645
0.1001 26.3287 54000 0.1200 20.3155 4.6100
0.0924 26.8164 55000 0.1189 20.2538 4.5532
0.0872 27.3038 56000 0.1188 20.2890 4.5722
0.1047 27.7915 57000 0.1219 20.2362 4.5793
0.1034 28.2790 58000 0.1139 20.1965 4.5438
0.0979 28.7666 59000 0.1160 19.8440 4.4278
0.1101 29.2541 60000 0.1212 20.1084 4.5509
0.1103 29.7418 61000 0.1159 19.8925 4.4586
0.0994 30.2292 62000 0.1199 20.0070 4.5020
0.1081 30.7169 63000 0.1146 19.9894 4.4317
0.0941 31.2043 64000 0.1151 19.8617 4.4388
0.0999 31.6920 65000 0.1140 19.6766 4.3883
0.1039 32.1795 66000 0.1184 19.8132 4.4262
0.0808 32.6672 67000 0.1171 19.6414 4.3726
0.0995 33.1546 68000 0.1191 19.8088 4.4183
0.0779 33.6423 69000 0.1087 19.3770 4.2455
0.0681 34.1297 70000 0.1162 19.6590 4.3236
0.1139 34.6174 71000 0.1150 19.7207 4.3947
0.0836 35.1049 72000 0.1166 19.6017 4.3915
0.0905 35.5925 73000 0.1159 19.5048 4.3244
0.0846 36.0800 74000 0.1173 19.6766 4.3513
0.0936 36.5677 75000 0.1112 19.5621 4.2771
0.0844 37.0551 76000 0.1127 19.4916 4.2739
0.0768 37.5428 77000 0.1098 19.3418 4.2937
0.0843 38.0302 78000 0.1137 19.4167 4.2219
0.0782 38.5179 79000 0.1124 19.3285 4.1966
0.0876 39.0054 80000 0.1088 19.2008 4.1635
0.0875 39.4931 81000 0.1082 19.1567 4.1808
0.0758 39.9807 82000 0.1122 19.2581 4.2203
0.0789 40.4682 83000 0.1084 19.0334 4.1406
0.0634 40.9559 84000 0.1117 18.9761 4.1296
0.0915 41.4433 85000 0.1106 19.0289 4.1785
0.0691 41.9310 86000 0.1145 19.1567 4.1516
0.0798 42.4184 87000 0.1059 19.0245 4.1114
0.0843 42.9061 88000 0.1082 18.8351 4.0775
0.0697 43.3936 89000 0.1114 18.9761 4.1130
0.0691 43.8812 90000 0.1107 18.9981 4.1185
0.0903 44.3687 91000 0.1104 18.9100 4.1335
0.058 44.8564 92000 0.1092 18.8703 4.0885
0.0798 45.3438 93000 0.1037 18.6897 4.0420
0.0702 45.8315 94000 0.1059 18.8703 4.1011
0.0608 46.3189 95000 0.1111 18.7910 4.0601
0.0606 46.8066 96000 0.1124 18.7382 4.0530
0.0616 47.2941 97000 0.1095 18.6236 4.0554
0.0462 47.7818 98000 0.1091 18.6192 4.0238
0.0557 48.2692 99000 0.1049 18.5002 3.9757
0.0517 48.7569 100000 0.1071 18.4386 3.9883
0.0481 49.2443 101000 0.1038 18.4694 3.9362
0.0726 49.7320 102000 0.1031 18.3328 3.9307
0.0578 50.2195 103000 0.1050 18.3945 3.9402
0.0388 50.7071 104000 0.1087 18.4650 3.9607
0.0545 51.1946 105000 0.1062 18.3020 3.9071
0.0497 51.6823 106000 0.1051 18.3989 3.9331
0.0375 52.1697 107000 0.1044 18.2139 3.8779
0.0354 52.6574 108000 0.1024 18.0861 3.8297
0.0421 53.1448 109000 0.1062 18.1346 3.8431
0.0318 53.6325 110000 0.1037 18.1037 3.8368
0.0406 54.1200 111000 0.1008 18.1169 3.8250
0.0393 54.6077 112000 0.1010 18.0641 3.8108
0.0433 55.0951 113000 0.1011 17.9803 3.7895
0.0398 55.5828 114000 0.1023 18.0905 3.8211
0.0372 56.0702 115000 0.0991 17.9936 3.7990
0.0376 56.5579 116000 0.1001 18.0420 3.7942
0.0375 57.0454 117000 0.1002 18.0332 3.7863
0.0277 57.5330 118000 0.1030 17.9892 3.7714
0.0307 58.0205 119000 0.1028 17.9055 3.7572
0.0244 58.5082 120000 0.1021 17.9319 3.7706
0.0336 58.9959 121000 0.1012 17.9363 3.7666
0.0286 59.4833 122000 0.1005 17.9275 3.7611
0.0277 59.9710 123000 0.1007 17.8878 3.7595

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
36
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davidilag/wav2vec2-xls-r-1b-faroese-100h-60-epochs_20250108_v2

Finetuned
(103)
this model