conditional-detr-resnet-50_fine_tuned_beyond_words
This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the loc_beyond_words dataset. It achieves the following results on the evaluation set:
- Loss: 0.5892
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.674 | 0.28 | 100 | 1.7571 |
1.4721 | 0.56 | 200 | 1.2737 |
1.2557 | 0.84 | 300 | 1.1037 |
1.0781 | 1.12 | 400 | 1.0184 |
1.0353 | 1.4 | 500 | 0.9988 |
1.0324 | 1.69 | 600 | 0.9951 |
0.9131 | 1.97 | 700 | 0.9224 |
0.8724 | 2.25 | 800 | 0.9692 |
0.8129 | 2.53 | 900 | 0.8670 |
0.9 | 2.81 | 1000 | 0.8326 |
0.7993 | 3.09 | 1100 | 0.7875 |
0.7907 | 3.37 | 1200 | 0.7517 |
0.8424 | 3.65 | 1300 | 0.9088 |
0.7808 | 3.93 | 1400 | 0.8506 |
0.7469 | 4.21 | 1500 | 0.7928 |
0.7582 | 4.49 | 1600 | 0.7228 |
0.7546 | 4.78 | 1700 | 0.7588 |
0.7842 | 5.06 | 1800 | 0.7726 |
0.775 | 5.34 | 1900 | 0.7676 |
0.7263 | 5.62 | 2000 | 0.7164 |
0.7209 | 5.9 | 2100 | 0.7061 |
0.7259 | 6.18 | 2200 | 0.7579 |
0.7701 | 6.46 | 2300 | 0.8184 |
0.7391 | 6.74 | 2400 | 0.6684 |
0.6834 | 7.02 | 2500 | 0.7042 |
0.7098 | 7.3 | 2600 | 0.7166 |
0.7498 | 7.58 | 2700 | 0.6752 |
0.7056 | 7.87 | 2800 | 0.7064 |
0.7004 | 8.15 | 2900 | 0.7090 |
0.6964 | 8.43 | 3000 | 0.7318 |
0.682 | 8.71 | 3100 | 0.7216 |
0.7309 | 8.99 | 3200 | 0.6545 |
0.6576 | 9.27 | 3300 | 0.6478 |
0.7014 | 9.55 | 3400 | 0.6814 |
0.673 | 9.83 | 3500 | 0.6783 |
0.6455 | 10.11 | 3600 | 0.7248 |
0.7041 | 10.39 | 3700 | 0.7729 |
0.6664 | 10.67 | 3800 | 0.6746 |
0.6161 | 10.96 | 3900 | 0.6414 |
0.6975 | 11.24 | 4000 | 0.6637 |
0.6751 | 11.52 | 4100 | 0.6570 |
0.6092 | 11.8 | 4200 | 0.6691 |
0.6593 | 12.08 | 4300 | 0.6276 |
0.6449 | 12.36 | 4400 | 0.6388 |
0.6136 | 12.64 | 4500 | 0.6711 |
0.6521 | 12.92 | 4600 | 0.6768 |
0.6162 | 13.2 | 4700 | 0.6427 |
0.7083 | 13.48 | 4800 | 0.6492 |
0.6407 | 13.76 | 4900 | 0.6213 |
0.6371 | 14.04 | 5000 | 0.6674 |
0.626 | 14.33 | 5100 | 0.6185 |
0.6442 | 14.61 | 5200 | 0.7180 |
0.5981 | 14.89 | 5300 | 0.6441 |
0.629 | 15.17 | 5400 | 0.6262 |
0.625 | 15.45 | 5500 | 0.6397 |
0.6123 | 15.73 | 5600 | 0.6440 |
0.6084 | 16.01 | 5700 | 0.6493 |
0.6021 | 16.29 | 5800 | 0.6263 |
0.6502 | 16.57 | 5900 | 0.6254 |
0.6339 | 16.85 | 6000 | 0.7043 |
0.5925 | 17.13 | 6100 | 0.8014 |
0.6453 | 17.42 | 6200 | 0.6385 |
0.6143 | 17.7 | 6300 | 0.6033 |
0.6057 | 17.98 | 6400 | 0.6881 |
0.6386 | 18.26 | 6500 | 0.6366 |
0.5839 | 18.54 | 6600 | 0.6563 |
0.6013 | 18.82 | 6700 | 0.5982 |
0.5999 | 19.1 | 6800 | 0.6064 |
0.6023 | 19.38 | 6900 | 0.5795 |
0.5593 | 19.66 | 7000 | 0.6538 |
0.6375 | 19.94 | 7100 | 0.6991 |
0.6073 | 20.22 | 7200 | 0.7117 |
0.596 | 20.51 | 7300 | 0.6034 |
0.5987 | 20.79 | 7400 | 0.6489 |
0.5922 | 21.07 | 7500 | 0.6216 |
0.589 | 21.35 | 7600 | 0.6257 |
0.6047 | 21.63 | 7700 | 0.6415 |
0.5775 | 21.91 | 7800 | 0.6159 |
0.588 | 22.19 | 7900 | 0.6095 |
0.5844 | 22.47 | 8000 | 0.6373 |
0.5964 | 22.75 | 8100 | 0.6022 |
0.5987 | 23.03 | 8200 | 0.6050 |
0.5605 | 23.31 | 8300 | 0.6083 |
0.5835 | 23.6 | 8400 | 0.7823 |
0.5816 | 23.88 | 8500 | 0.6417 |
0.5757 | 24.16 | 8600 | 0.6324 |
0.5997 | 24.44 | 8700 | 0.6046 |
0.5674 | 24.72 | 8800 | 0.6558 |
0.5703 | 25.0 | 8900 | 0.5819 |
0.5766 | 25.28 | 9000 | 0.6116 |
0.5548 | 25.56 | 9100 | 0.5877 |
0.564 | 25.84 | 9200 | 0.5672 |
0.548 | 26.12 | 9300 | 0.6073 |
0.5436 | 26.4 | 9400 | 0.5739 |
0.6006 | 26.69 | 9500 | 0.6101 |
0.5519 | 26.97 | 9600 | 0.5869 |
0.5432 | 27.25 | 9700 | 0.5721 |
0.5597 | 27.53 | 9800 | 0.5807 |
0.5254 | 27.81 | 9900 | 0.5849 |
0.5366 | 28.09 | 10000 | 0.5831 |
0.5654 | 28.37 | 10100 | 0.5993 |
0.57 | 28.65 | 10200 | 0.5892 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 124
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for davanstrien/conditional-detr-resnet-50_fine_tuned_beyond_words
Base model
microsoft/conditional-detr-resnet-50