natural-lora-rtx3090

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

Dense forest, ancient tree, wooden bridge, moss-covered, flowing stream, mystical atmosphere, high resolution, balanced composition, green foliage, misty background, realistic photography, soft natural light, lush greenery, nature scenery, serene, tranquil mood, detailed texture, vibrant greens, forest pathway, overgrown.

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
Dense forest, ancient tree, wooden bridge, moss-covered, flowing stream, mystical atmosphere, high resolution, balanced composition, green foliage, misty background, realistic photography, soft natural light, lush greenery, nature scenery, serene, tranquil mood, detailed texture, vibrant greens, forest pathway, overgrown.
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 4
  • Training steps: 10000
  • Learning rate: 0.0001
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: bf16
  • Quantised: Yes: fp8-quanto
  • Xformers: Not used
  • LyCORIS Config:
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}

Datasets

natural-booru-caption-flux

  • Repeats: 0
  • Total number of images: 1089
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

natural-full-caption-flux

  • Repeats: 0
  • Total number of images: 1046
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "Dense forest, ancient tree, wooden bridge, moss-covered, flowing stream, mystical atmosphere, high resolution, balanced composition, green foliage, misty background, realistic photography, soft natural light, lush greenery, nature scenery, serene, tranquil mood, detailed texture, vibrant greens, forest pathway, overgrown."

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
7
Inference API
Examples

Model tree for datnt114/natural-lora-rtx3090

Adapter
(13227)
this model