Whisper Small Ori vi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4093
  • Wer: 15.2829

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4964 0.2222 100 0.4513 18.4622
0.4607 0.4444 200 0.4251 18.1479
0.4223 0.6667 300 0.4054 17.3732
0.4186 0.8889 400 0.3998 17.2562
0.2411 1.1111 500 0.3978 16.8616
0.2425 1.3333 600 0.3946 16.8396
0.2194 1.5556 700 0.3926 14.8882
0.238 1.7778 800 0.3905 16.5034
0.2323 2.0 900 0.3904 15.2755
0.1294 2.2222 1000 0.4076 15.0709
0.1139 2.4444 1100 0.4080 15.3706
0.1108 2.6667 1200 0.4102 15.1732
0.1197 2.8889 1300 0.4093 15.2829

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0
Downloads last month
2
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for datdo2717/whisper-small-en-23-11

Finetuned
(2192)
this model

Dataset used to train datdo2717/whisper-small-en-23-11

Evaluation results