File size: 3,266 Bytes
3c32c17 9211a0d 3c32c17 fa19596 3c32c17 9211a0d 28f6377 3c32c17 58f79b0 3c32c17 cf61d2c 714a852 3c32c17 382a395 28f6377 a28f3a0 fb3c0ae f6c34a8 46c5386 f6c34a8 fb3c0ae a28f3a0 28f6377 fb3c0ae a28f3a0 9211a0d a28f3a0 58f79b0 f6c34a8 c6b081f 45d9e0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
language:
- en
- am
- bn
- sw
- uz
- es
- pl
- fr
- de
multilinguality:
- multilingual
tags:
- words
- word
- embedding
- phonetic
- phonological
- cognates
- rhyme
- analogy
pretty_name: PWESuite Evaluation v1
size_categories:
- 100K<n<1M
dataset_info:
features:
- name: token_ort
dtype: string
- name: token_ipa
dtype: string
- name: token_arp
dtype: string
- name: lang
dtype: string
- name: purpose
dtype: string
- name: extra_index
dtype: string
splits:
- name: train
num_examples: 1738496
license: apache-2.0
---
<!--p align="center">
<img src="https://github.com/zouharvi/pwesuite/assets/7661193/e8db7af0-cccf-425a-8a3c-4f260d5abab7" width="500em">
</p-->
[<img src="https://img.youtube.com/vi/XJ9bAPaJlyc/maxresdefault.jpg" width=700px>](https://www.youtube.com/watch?v=XJ9bAPaJlyc)
# PWESuite-Eval
Dataset composed of multiple smaller datasets used for the evaluation of phonetic word embeddings.
See code for evaluation [here](https://github.com/zouharvi/pwesuite).
If you use this dataset/evaluation, please cite the [paper at LREC-COLING 2024](https://arxiv.org/abs/2304.02541):
```
@article{zouhar2023pwesuite,
title={{PWESuite}: {P}honetic Word Embeddings and Tasks They Facilitate},
author={Zouhar, Vil{\'e}m and Chang, Kalvin and Cui, Chenxuan and Carlson, Nathaniel and Robinson, Nathaniel and Sachan, Mrinmaya and Mortensen, David},
journal={arXiv preprint arXiv:2304.02541},
year={2023},
url={https://arxiv.org/abs/2304.02541}
}
```
> **Abstract:** Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.
Used datasets:
- [CMU Pronunciation dictionary](http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
- [CC-100](https://data.statmt.org/cc-100/)
- [CogNet v0](https://aclanthology.org/P19-1302/)
- [Vitz and Winkler (1973)](https://www.sciencedirect.com/science/article/pii/S0022537173800167)
Authors:
- Vilém Zouhar (ETH Zürich, [contact](mailto:[email protected]))
- Kalvin Chang (CMU LTI, [contact](mailto:[email protected]))
- Chenxuan Cui (CMU LTI, [contact](mailto:[email protected]))
- Nathaniel Robinson (CMU LTI, [contact](mailto:[email protected]))
- Nathaniel Carlson (BYU, [contact](mailto:[email protected]))
- David Mortensen (CMU LTI, [contact](mailto:[email protected]))
## YouTube Presentation
Watch [12-minute introduction to PWESuite](https://www.youtube.com/watch?v=XJ9bAPaJlyc).
![poster](https://github.com/zouharvi/pwesuite/assets/7661193/e2539886-30b1-4fbd-b768-ec3a61dfa1ce)
|