token_ort
stringlengths 1
125
| token_ipa
stringlengths 1
112
| token_arp
stringlengths 1
248
| lang
stringclasses 10
values | purpose
stringclasses 4
values | extra_index
stringlengths 0
6
|
---|---|---|---|---|---|
a | ə | AH0 | en | main | |
a's | eɪz | EY1 Z | en | main | |
a. | eɪ | EY1 | en | main | |
a.'s | eɪz | EY1 Z | en | main | |
a.s | eɪz | EY1 Z | en | main | |
a42128 | eɪfɔrtuːwʌntuːeɪt | EY1 F AO1 R T UW1 W AH1 N T UW1 EY1 T | en | main | |
aa | eɪeɪ | EY2 EY1 | en | main | |
aaa | trɪpəleɪ | T R IH2 P AH0 L EY1 | en | main | |
aaberg | ɑːb | AA1 B ER0 G | en | main | |
aachen | ɑːkən | AA1 K AH0 N | en | main | |
aachener | ɑːkən | AA1 K AH0 N ER0 | en | main | |
aah | ɑː | AA1 | en | main | |
aaker | ɑːk | AA1 K ER0 | en | main | |
aaliyah | ɑːliːɑː | AA2 L IY1 AA2 | en | main | |
aalseth | ɑːlsɛθ | AA1 L S EH0 TH | en | main | |
aamodt | ɑːmət | AA1 M AH0 T | en | main | |
aancor | ɑːnkɔr | AA1 N K AO2 R | en | main | |
aardema | ɑːrdɛmə | AA0 R D EH1 M AH0 | en | main | |
aardvark | ɑːrdvɑːrk | AA1 R D V AA2 R K | en | main | |
aardvarks | ɑːrdvɑːrks | AA1 R D V AA2 R K S | en | main | |
aargh | ɑːr | AA1 R G | en | main | |
aaron | ɛrən | EH1 R AH0 N | en | main | |
aaron's | ɛrənz | EH1 R AH0 N Z | en | main | |
aarons | ɛrənz | EH1 R AH0 N Z | en | main | |
aaronson | ɛrənsən | EH1 R AH0 N S AH0 N | en | main | |
aaronson's | ɛrənsənz | EH1 R AH0 N S AH0 N Z | en | main | |
aarti | ɑːrtiː | AA1 R T IY2 | en | main | |
aase | ɑːs | AA1 S | en | main | |
aasen | ɑːsən | AA1 S AH0 N | en | main | |
ab | æb | AE1 B | en | main | |
aba | eɪbiːeɪ | EY2 B IY2 EY1 | en | main | |
ababa | əbɑːbə | AH0 B AA1 B AH0 | en | main | |
abacha | æbəkə | AE1 B AH0 K AH0 | en | main | |
aback | əbæk | AH0 B AE1 K | en | main | |
abaco | æbəkoʊ | AE1 B AH0 K OW2 | en | main | |
abacus | æbəkəs | AE1 B AH0 K AH0 S | en | main | |
abad | əbɑːd | AH0 B AA1 D | en | main | |
abadaka | əbædəkə | AH0 B AE1 D AH0 K AH0 | en | main | |
abadi | əbædi | AH0 B AE1 D IY0 | en | main | |
abadie | əbædi | AH0 B AE1 D IY0 | en | main | |
abair | əbɛr | AH0 B EH1 R | en | main | |
abalkin | əbɑːlkɪn | AH0 B AA1 L K IH0 N | en | main | |
abalone | æbəloʊni | AE2 B AH0 L OW1 N IY0 | en | main | |
abalones | æbəloʊniːz | AE2 B AH0 L OW1 N IY0 Z | en | main | |
abalos | ɑːbɑːloʊz | AA0 B AA1 L OW0 Z | en | main | |
abandon | əbændən | AH0 B AE1 N D AH0 N | en | main | |
abandoned | əbændənd | AH0 B AE1 N D AH0 N D | en | main | |
abandoning | əbændənɪŋ | AH0 B AE1 N D AH0 N IH0 NG | en | main | |
abandonment | əbændənmənt | AH0 B AE1 N D AH0 N M AH0 N T | en | main | |
abandonments | əbændənmənts | AH0 B AE1 N D AH0 N M AH0 N T S | en | main | |
abandons | əbændənz | AH0 B AE1 N D AH0 N Z | en | main | |
abanto | əbæntoʊ | AH0 B AE1 N T OW0 | en | main | |
abarca | əbɑːrkə | AH0 B AA1 R K AH0 | en | main | |
abare | ɑːbɑːri | AA0 B AA1 R IY0 | en | main | |
abascal | æbəskəl | AE1 B AH0 S K AH0 L | en | main | |
abash | əbæʃ | AH0 B AE1 SH | en | main | |
abashed | əbæʃt | AH0 B AE1 SH T | en | main | |
abasia | əbeɪʒjə | AH0 B EY1 ZH Y AH0 | en | main | |
abate | əbeɪt | AH0 B EY1 T | en | main | |
abated | əbeɪtɪd | AH0 B EY1 T IH0 D | en | main | |
abatement | əbeɪtmənt | AH0 B EY1 T M AH0 N T | en | main | |
abatements | əbeɪtmənts | AH0 B EY1 T M AH0 N T S | en | main | |
abates | əbeɪts | AH0 B EY1 T S | en | main | |
abating | əbeɪtɪŋ | AH0 B EY1 T IH0 NG | en | main | |
abba | æbə | AE1 B AH0 | en | main | |
abbado | əbɑːdoʊ | AH0 B AA1 D OW0 | en | main | |
abbas | əbɑːs | AH0 B AA1 S | en | main | |
abbasi | ɑːbɑːsi | AA0 B AA1 S IY0 | en | main | |
abbate | ɑːbeɪt | AA1 B EY0 T | en | main | |
abbatiello | ɑːbɑːtiːɛloʊ | AA0 B AA0 T IY0 EH1 L OW0 | en | main | |
abbe | æbi | AE1 B IY0 | en | main | |
abbenhaus | æbənhaʊs | AE1 B AH0 N HH AW2 S | en | main | |
abbett | əbɛt | AH0 B EH1 T | en | main | |
abbeville | æbvɪl | AE1 B V IH0 L | en | main | |
abbey | æbi | AE1 B IY0 | en | main | |
abbey's | æbiːz | AE1 B IY0 Z | en | main | |
abbie | æbi | AE1 B IY0 | en | main | |
abbitt | æbɪt | AE1 B IH0 T | en | main | |
abbot | æbət | AE1 B AH0 T | en | main | |
abbotstown | æbətstaʊn | AE1 B AH0 T S T AW1 N | en | main | |
abbott | æbət | AE1 B AH0 T | en | main | |
abbott's | æbəts | AE1 B AH0 T S | en | main | |
abbottstown | æbətstaʊn | AE1 B AH0 T S T AW1 N | en | main | |
abboud | əbuːd | AH0 B UW1 D | en | main | |
abbreviate | əbriːviːeɪt | AH0 B R IY1 V IY0 EY2 T | en | main | |
abbreviated | əbriːviːeɪtɪd | AH0 B R IY1 V IY0 EY2 T IH0 D | en | main | |
abbreviates | əbriːviːeɪts | AH0 B R IY1 V IY0 EY2 T S | en | main | |
abbreviating | əbriːviːeɪtɪŋ | AH0 B R IY1 V IY0 EY2 T IH0 NG | en | main | |
abbreviation | əbriːviːeɪʃən | AH0 B R IY2 V IY0 EY1 SH AH0 N | en | main | |
abbreviations | əbriːviːeɪʃənz | AH0 B R IY2 V IY0 EY1 SH AH0 N Z | en | main | |
abbruzzese | ɑːbruːtseɪzi | AA0 B R UW0 T S EY1 Z IY0 | en | main | |
abbs | æbz | AE1 B Z | en | main | |
abby | æbi | AE1 B IY0 | en | main | |
abc | eɪbiːsiː | EY1 B IY2 S IY2 | en | main | |
abc's | eɪbiːsiːz | EY1 B IY2 S IY2 Z | en | main | |
abco | æbkoʊ | AE1 B K OW0 | en | main | |
abcotek | æbkoʊtɛk | AE1 B K OW0 T EH2 K | en | main | |
abcs | eɪbiːsiːz | EY1 B IY2 S IY2 Z | en | main | |
abdalla | æbdælə | AE2 B D AE1 L AH0 | en | main | |
abdallah | æbdælə | AE2 B D AE1 L AH0 | en | main |
PWESuite-Eval
Dataset composed of multiple smaller datasets used for the evaluation of phonetic word embeddings. See code for evaluation here. If you use this dataset/evaluation, please cite the paper at LREC-COLING 2024:
@article{zouhar2023pwesuite,
title={{PWESuite}: {P}honetic Word Embeddings and Tasks They Facilitate},
author={Zouhar, Vil{\'e}m and Chang, Kalvin and Cui, Chenxuan and Carlson, Nathaniel and Robinson, Nathaniel and Sachan, Mrinmaya and Mortensen, David},
journal={arXiv preprint arXiv:2304.02541},
year={2023},
url={https://arxiv.org/abs/2304.02541}
}
Abstract: Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.
Used datasets:
Authors:
- Vilém Zouhar (ETH Zürich, contact)
- Kalvin Chang (CMU LTI, contact)
- Chenxuan Cui (CMU LTI, contact)
- Nathaniel Robinson (CMU LTI, contact)
- Nathaniel Carlson (BYU, contact)
- David Mortensen (CMU LTI, contact)
YouTube Presentation
- Downloads last month
- 121