Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ValueError
Message:      Failed to convert pandas DataFrame to Arrow Table from file /tmp/hf-datasets-cache/medium/datasets/48937903832340-config-parquet-and-info-zhengyun21-PMC-Patients-M-e8bea6f2/hub/datasets--zhengyun21--PMC-Patients-MetaData/snapshots/23f802e6212503fef847e666876495fdc577111b/PMC-Patients_human_eval.json.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1854, in _prepare_split_single
                  for _, table in generator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 172, in _generate_tables
                  raise ValueError(
              ValueError: Failed to convert pandas DataFrame to Arrow Table from file /tmp/hf-datasets-cache/medium/datasets/48937903832340-config-parquet-and-info-zhengyun21-PMC-Patients-M-e8bea6f2/hub/datasets--zhengyun21--PMC-Patients-MetaData/snapshots/23f802e6212503fef847e666876495fdc577111b/PMC-Patients_human_eval.json.
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1897, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

text
string
16965616
16948834
16965623
16965622
16961927
16945158
16978407
16930493
16968548
16978408
16965640
17485794
17093350
17485803
17485806
16968544
16984656
16968536
17031412
17031413
16945159
16999859
16995951
17010191
16995931
17007637
16961916
16961933
16987423
17018155
16961922
17020598
17020609
17026760
17007641
17010190
17026774
17034632
17034646
17026772
17034631
17032461
17038179
17052340
17044930
16984659
17052345
17034648
17040576
17034630
17054798
17042962
17067398
17074096
17034629
17074093
17062163
17054802
17074081
17076893
17090300
17078889
17087838
17147774
17094798
17105654
17118187
17118185
17118178
17118188
17118207
17125506
17123451
17129390
17123443
17118184
16921414
17132174
17140448
17129366
17134508
17147818
17112390
17137499
17251657
17251658
17251661
17147825
17156481
17144931
17156419
17156493
17129392
17164003
17169149
17173703
17166281
17156465
17156470
17176478
End of preview.

Meta data for PMC-Patients that might facilitate reproduction or usage of our dataset, consisting of the following files (most of which can be derived from our main files above).

PMIDs.json

PMIDs of articles from which PMC-Patients are extracted. List of string, length 140,897.

train_PMIDs.json & dev_PMIDs.json & test_PMIDs.json

PMIDs of articles in training / dev / test split. List of string.

train_patient_uids.json & dev_patient_uids.json & test_patient_uids.json

Patient_uids of notes in training / dev / test split. List of string.

patient2article_relevance.json

Full patient-to-article dataset. A dict where the keys are patient_uid of queries and each entry is a list of PMID, representing articles relevant to the query.

The 3-point relevance can be obtained by checking whether the PMID is in PMIDs.json.

patient2patient_similarity.json

Full patient-to-patient similarity dataset. A dict where the keys are patient_uid of queries and each entry is a list of patient_uid, representing similar patients to the query.

The 3-point similarity can be obtained by checking whether the similar patient share the PMID (the string before '-' in patient_uid) with the query patient.

PMID2Mesh.json

Dict of PMIDs to MeSH terms of the article.

MeSH_Humans_patient_uids.json

patient_uid of the patients in PMC-Patients-Humans (extracted from articles with "Humans" MeSH term). List of string.

PMC-Patients_citations.json

Citations for all articles we used to collect our dataset. A dict where the keys are patient_uid and each entry is the citation of the source article.

human_PMIDs.json

PMIDs of the 500 randomly sampled articles for human evaluation. List of string.

PMC-Patients_human_eval.json

Expert annotation results of the 500 articles in human_PMIDs.json, including manually annotated patient note, demographics, and relations of the top 5 retrieved articles / patients. List of dict, and the keys are almost identical to PMC-Patients.json, with the exception of human_patient_id and human_patient_uid.

The relational annotations are different from automatic ones. They are strings indicating on which dimension(s) are the patient-article / patient-patient pair relevant / similar. "0", "1", "2", and "3" represent "Irrelevant", "Diagnosis", "Test", "Treatment" in ReCDS-PAR, and represent "Dissimilar", "Features", "Outcomes", "Exposure" in ReCDS-PPR. Note that a pair can be relevant / similar on multiple dimensions at the same time.

PAR_PMIDs.json

PMIDs of the 11.7M articles used as PAR corpus. List of string.

Downloads last month
58