prompt
stringlengths
3.32k
5.13M
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Chalco", "col1": null, "col2": "Velk\u00e1 pardubick\u00e1 2002"}, {"col0": "Clyde Van Dusen", "col1": "Clyde Van Dusen", "col2": null}, {"col0": "George Washington", "col1": "George Washington", "col2": null}, {"col0": "Dahlia", "col1": "Dahlia", "col2": null}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Chalco","col1":null,"col2":"Velká pardubická 2002"},{"col0":"Clyde Van Dusen","col1":"Clyde Van Dusen","col2":null},{"col0":"George Washington","col1":"George Washington","col2":null},{"col0":"Dahlia","col1":"Dahlia","col2":null}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Unnamed: 0": 0, "col0": "org.apache.commons.lang.time.FastDateFormat#List#parsePattern#?#619", "col1": 0.0, "col2": "|.|3&qq77Z&|", "col3": 0.6833986369, "col4": "tokenLen >= 4", "col5": "_"}, {"Unnamed: 0": 1, "col0": "org.apache.commons.lang.time.FastDateFormat#FastDateFormat#getDateInstance#?,int,TimeZone,Locale#285", "col1": 0.0, "col2": 0.6666666667, "col3": 0.4, "col4": "!(locale != null)", "col5": "CT"}, {"Unnamed: 0": 2, "col0": "org.apache.commons.lang.time.FastDateFormat$Pair#int#hashCode#?#1738", "col1": "().()", "col2": "().S", "col3": 0.3, "col4": "(mObj1 == null ? 0 : mObj1.hashCode()) + (mObj2 == null ? 0 : mObj2.hashCode())==0", "col5": "_"}, {"Unnamed: 0": 3, "col0": "org.apache.commons.lang.time.FastDateFormat#?#FastDateFormat#?,String,TimeZone,Locale#551", "col1": 0.0, "col2": 0.2269439697, "col3": 0.1361663818, "col4": "!(locale == null)", "col5": "_"}, {"Unnamed: 0": 4, "col0": "org.apache.commons.lang.time.FastDateFormat#String#parseToken#?,String,int[]#740", "col1": 0.0, "col2": 0.1730769231, "col3": 0.1038461538, "col4": "c == '\\''", "col5": "_"}, {"Unnamed: 0": 5, "col0": "org.apache.commons.lang.time.FastDateFormat#void#init#?#566", "col1": "().()", "col2": 0.0220675216, "col3": 0.013240513, "col4": "mRules[i].estimateLength()==i", "col5": "_"}, {"Unnamed: 0": 6, "col0": "org.apache.commons.lang.time.FastDateFormat#int#hashCode#?#1007", "col1": 0.0, "col2": 0.0220675216, "col3": 0.013240513, "col4": "total>=0", "col5": "_"}, {"Unnamed: 0": "7", "col0": "org.apache.commons.lang.time.FastDateFormat#FastDateFormat#getInstance#?,String,TimeZone,Locale#214", "col1": 0.0, "col2": 0.0104914769, "col3": 0.0062948862, "col4": "format == null", "col5": "_"}, {"Unnamed: 0": 8, "col0": "org.apache.commons.lang.time.FastDateFormat$TimeZoneNameRule#?#TimeZoneNameRule#?,TimeZone,boolean,Locale,int#1544", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "!(timeZoneForced)", "col5": "_"}, {"Unnamed: 0": 9, "col0": "org.apache.commons.lang.time.FastDateFormat$CharacterLiteral#int#estimateLength#?#1089", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "1>0", "col5": "_"}, {"Unnamed: 0": 10, "col0": "org.apache.commons.lang.time.FastDateFormat$TextField#int#estimateLength#?#1161", "col1": "().()", "col2": 0.0, "col3": 0.0, "col4": "ma*>()", "col5": "_"}, {"Unnamed: 0": 11, "col0": "org.apache.commons.lang.time.FastDateFormat$PaddedNumberField#?#PaddedNumberField#?,int,int#1273", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "!(size < 3)", "col5": "_"}, {"Unnamed: 0": "|Z", "col0": "org.apache.commons.lang.time.FastDateFormat$Pair#boolean#equals#?,Object#1717", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "!(this == obj)", "col5": "_"}, {"Unnamed: 0": 13, "col0": "org.apache.commons.lang.time.FastDateFormat#FastDateFormat#getDateTimeInstance#?,int,int,TimeZone,Locale#462", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "!(timeZone != null)", "col5": "GT"}, {"Unnamed: 0": 14, "col0": "org.apache.commons.lang.time.FastDateFormat$TwelveHourField#int#estimateLength#?#1455", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "mRule.estimateLength()>=0", "col5": "_"}, {"Unnamed: 0": "|S", "col0": "org.apache.commons.lang.time.FastDateFormat$TwoDigitNumberField#int#estimateLength#?#1340", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "2>=0", "col5": "_"}, {"Unnamed: 0": 16, "col0": "org.apache.commons.lang.time.FastDateFormat$PaddedNumberField#int#estimateLength#?#1285", "col1": 0.0, "col2": 0.0, "col3": "().()", "col4": "4>=0", "col5": "_"}, {"Unnamed: 0": 17, "col0": "org.apache.commons.lang.time.FastDateFormat$StringLiteral#int#estimateLength#?#1120", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "mVa1ue.1ength()>()", "col5": "_"}, {"Unnamed: 0": 18, "col0": "org.apache.commons.lang.time.FastDateFormat$UnpaddedNumberField#int#estimateLength#?#1193", "col1": "().()", "col2": 0.0, "col3": 0.0, "col4": "4!=0", "col5": "_"}, {"Unnamed: 0": 19, "col0": "org.apache.commons.1ang.time.EastDateEormatSTime2oneNameKu1e#int#estimateLength#?#|SG()", "col1": 0.0, "col2": 0.0, "col3": 0.0, "col4": "4>=0", "col5": "_"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Unnamed: 0":0,"col0":"org.apache.commons.lang.time.FastDateFormat#List#parsePattern#?#619","col1":0.0,"col2":1.1389977281,"col3":0.6833986369,"col4":"tokenLen >= 4","col5":"_"},{"Unnamed: 0":1,"col0":"org.apache.commons.lang.time.FastDateFormat#FastDateFormat#getDateInstance#?,int,TimeZone,Locale#285","col1":0.0,"col2":0.6666666667,"col3":0.4,"col4":"!(locale != null)","col5":"GT"},{"Unnamed: 0":2,"col0":"org.apache.commons.lang.time.FastDateFormat$Pair#int#hashCode#?#1738","col1":0.0,"col2":0.5,"col3":0.3,"col4":"(mObj1 == null ? 0 : mObj1.hashCode()) + (mObj2 == null ? 0 : mObj2.hashCode())==0","col5":"_"},{"Unnamed: 0":3,"col0":"org.apache.commons.lang.time.FastDateFormat#?#FastDateFormat#?,String,TimeZone,Locale#551","col1":0.0,"col2":0.2269439697,"col3":0.1361663818,"col4":"!(locale == null)","col5":"_"},{"Unnamed: 0":4,"col0":"org.apache.commons.lang.time.FastDateFormat#String#parseToken#?,String,int[]#740","col1":0.0,"col2":0.1730769231,"col3":0.1038461538,"col4":"c == '\\''","col5":"_"},{"Unnamed: 0":5,"col0":"org.apache.commons.lang.time.FastDateFormat#void#init#?#566","col1":0.0,"col2":0.0220675216,"col3":0.013240513,"col4":"mRules[i].estimateLength()==i","col5":"_"},{"Unnamed: 0":6,"col0":"org.apache.commons.lang.time.FastDateFormat#int#hashCode#?#1007","col1":0.0,"col2":0.0220675216,"col3":0.013240513,"col4":"total>=0","col5":"_"},{"Unnamed: 0":7,"col0":"org.apache.commons.lang.time.FastDateFormat#FastDateFormat#getInstance#?,String,TimeZone,Locale#214","col1":0.0,"col2":0.0104914769,"col3":0.0062948862,"col4":"format == null","col5":"_"},{"Unnamed: 0":8,"col0":"org.apache.commons.lang.time.FastDateFormat$TimeZoneNameRule#?#TimeZoneNameRule#?,TimeZone,boolean,Locale,int#1544","col1":0.0,"col2":0.0,"col3":0.0,"col4":"!(timeZoneForced)","col5":"_"},{"Unnamed: 0":9,"col0":"org.apache.commons.lang.time.FastDateFormat$CharacterLiteral#int#estimateLength#?#1089","col1":0.0,"col2":0.0,"col3":0.0,"col4":"1>0","col5":"_"},{"Unnamed: 0":10,"col0":"org.apache.commons.lang.time.FastDateFormat$TextField#int#estimateLength#?#1161","col1":0.0,"col2":0.0,"col3":0.0,"col4":"max>0","col5":"_"},{"Unnamed: 0":11,"col0":"org.apache.commons.lang.time.FastDateFormat$PaddedNumberField#?#PaddedNumberField#?,int,int#1273","col1":0.0,"col2":0.0,"col3":0.0,"col4":"!(size < 3)","col5":"_"},{"Unnamed: 0":12,"col0":"org.apache.commons.lang.time.FastDateFormat$Pair#boolean#equals#?,Object#1717","col1":0.0,"col2":0.0,"col3":0.0,"col4":"!(this == obj)","col5":"_"},{"Unnamed: 0":13,"col0":"org.apache.commons.lang.time.FastDateFormat#FastDateFormat#getDateTimeInstance#?,int,int,TimeZone,Locale#462","col1":0.0,"col2":0.0,"col3":0.0,"col4":"!(timeZone != null)","col5":"GT"},{"Unnamed: 0":14,"col0":"org.apache.commons.lang.time.FastDateFormat$TwelveHourField#int#estimateLength#?#1455","col1":0.0,"col2":0.0,"col3":0.0,"col4":"mRule.estimateLength()>=0","col5":"_"},{"Unnamed: 0":15,"col0":"org.apache.commons.lang.time.FastDateFormat$TwoDigitNumberField#int#estimateLength#?#1340","col1":0.0,"col2":0.0,"col3":0.0,"col4":"2>=0","col5":"_"},{"Unnamed: 0":16,"col0":"org.apache.commons.lang.time.FastDateFormat$PaddedNumberField#int#estimateLength#?#1285","col1":0.0,"col2":0.0,"col3":0.0,"col4":"4>=0","col5":"_"},{"Unnamed: 0":17,"col0":"org.apache.commons.lang.time.FastDateFormat$StringLiteral#int#estimateLength#?#1120","col1":0.0,"col2":0.0,"col3":0.0,"col4":"mValue.length()>0","col5":"_"},{"Unnamed: 0":18,"col0":"org.apache.commons.lang.time.FastDateFormat$UnpaddedNumberField#int#estimateLength#?#1193","col1":0.0,"col2":0.0,"col3":0.0,"col4":"4!=0","col5":"_"},{"Unnamed: 0":19,"col0":"org.apache.commons.lang.time.FastDateFormat$TimeZoneNameRule#int#estimateLength#?#1560","col1":0.0,"col2":0.0,"col3":0.0,"col4":"4>=0","col5":"_"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Turtle Pendant", "col1": 5.08, "col2": 6.67}, {"col0": "Turtle Pendant", "col1": 2.22, "col2": 2.86}, {"col0": "Turtle Pendant", "col1": 6.28, "col2": 7.43}, {"col0": "Armadillo Pendant", "col1": 2.54, "col2": 4.13}, {"col0": "Monkey Pendant", "col1": 2.54, "col2": "G.3S"}, {"col0": "Monkey Pendant", "col1": 2.86, "col2": 6.03}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Turtle Pendant","col1":5.08,"col2":6.67},{"col0":"Turtle Pendant","col1":2.22,"col2":2.86},{"col0":"Turtle Pendant","col1":6.28,"col2":7.43},{"col0":"Armadillo Pendant","col1":2.54,"col2":4.13},{"col0":"Monkey Pendant","col1":2.54,"col2":6.35},{"col0":"Monkey Pendant","col1":2.86,"col2":6.03}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "kind of liquid which is specifically prepared for human consumption": "http://kalimarkbovonto.com"}, {"Prop0": "Prop2", "kind of liquid which is specifically prepared for human consumption": "India"}, {"Prop0": "Prop3", "kind of liquid which is specifically prepared for human consumption": "1916-01-01T00:00:00Z"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","kind of liquid which is specifically prepared for human consumption":"http:\/\/kalimarkbovonto.com"},{"Prop0":"Prop2","kind of liquid which is specifically prepared for human consumption":"India"},{"Prop0":"Prop3","kind of liquid which is specifically prepared for human consumption":"1916-01-01T00:00:00Z"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "type of food based on potatoes": "Switzerland, Austria"}, {"Prop0": "Prop2", "type of food based on potatoes": "butter, flour, potato"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","type of food based on potatoes":"Switzerland, Austria"},{"Prop0":"Prop2","type of food based on potatoes":"butter, flour, potato"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "ingredient used in food product": "spined loach"}, {"Prop0": "Prop2", "ingredient used in food product": "spined loach"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","ingredient used in food product":"spined loach"},{"Prop0":"Prop2","ingredient used in food product":"spined loach"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Wannefeld", "col1": null}, {"col0": "Niederleierndorf", "col1": 97.0}, {"col0": "Winden (Kreuzau)", "col1": null}, {"col0": "M\u00fcggenhausen", "col1": null}, {"col0": "Reupzig", "col1": null}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Wannefeld","col1":null},{"col0":"Niederleierndorf","col1":97.0},{"col0":"Winden (Kreuzau)","col1":null},{"col0":"Müggenhausen","col1":null},{"col0":"Reupzig","col1":null}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Frenchman Butte", "col1": "national historic site of Canada", "col2": "schist", "col3": null}, {"col0": "Brandberg", "col1": "national monument of Namibia", "col2": "granite", "col3": null}, {"col0": "Aavasaksa", "col1": "part of UNESCO World Heritage Site", "col2": "pluton", "col3": null}, {"col0": "Katahdin", "col1": "National Natural Landmark", "col2": "granite", "col3": null}, {"col0": "Arrigetch Peaks", "col1": "National Natural Landmark", "col2": null, "col3": "IUCN category III: Natural Monument or Feature"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Frenchman Butte","col1":"national historic site of Canada","col2":"schist","col3":null},{"col0":"Brandberg","col1":"national monument of Namibia","col2":"granite","col3":null},{"col0":"Aavasaksa","col1":"part of UNESCO World Heritage Site","col2":"pluton","col3":null},{"col0":"Katahdin","col1":"National Natural Landmark","col2":"granite","col3":null},{"col0":"Arrigetch Peaks","col1":"National Natural Landmark","col2":null,"col3":"IUCN category III: Natural Monument or Feature"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Copper Cove", "col1": "Antarctic Treaty area"}, {"col0": "Warren Cove", "col1": "Massachusetts"}, {"col0": "Kennedy Cove", "col1": "Antarctic Treaty area"}, {"col0": "C1en GoVe", "col1": "Pierce County"}, {"col0": "Glen Cove", "col1": "Jefferson County"}, {"col0": "Sealers Cove", "col1": "Victoria"}, {"col0": "Deep Cove", "col1": "Southland District"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Copper Cove","col1":"Antarctic Treaty area"},{"col0":"Warren Cove","col1":"Massachusetts"},{"col0":"Kennedy Cove","col1":"Antarctic Treaty area"},{"col0":"Glen Cove","col1":"Pierce County"},{"col0":"Glen Cove","col1":"Jefferson County"},{"col0":"Sealers Cove","col1":"Victoria"},{"col0":"Deep Cove","col1":"Southland District"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "specific food preparation with cooking finished, and ready to eat, or be served": "Russian cuisine, Polish cuisine"}, {"Prop0": "Prop2", "specific food preparation with cooking finished, and ready to eat, or be served": "http://commons.wikimedia.org/wiki/Special:FilePath/Ru-%D0%BA%D0%B8%D1%81%D0%B5%D0%BB%D1%8C.ogg"}, {"Prop0": "Prop3", "specific food preparation with cooking finished, and ready to eat, or be served": "Kissel"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","specific food preparation with cooking finished, and ready to eat, or be served":"Russian cuisine, Polish cuisine"},{"Prop0":"Prop2","specific food preparation with cooking finished, and ready to eat, or be served":"http:\/\/commons.wikimedia.org\/wiki\/Special:FilePath\/Ru-%D0%BA%D0%B8%D1%81%D0%B5%D0%BB%D1%8C.ogg"},{"Prop0":"Prop3","specific food preparation with cooking finished, and ready to eat, or be served":"Kissel"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "kind of liquid which is specifically prepared for human consumption": "Gunpowder tea"}, {"Prop0": "Prop2", "kind of liquid which is specifically prepared for human consumption": "People's Republic of China"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","kind of liquid which is specifically prepared for human consumption":"Gunpowder tea"},{"Prop0":"Prop2","kind of liquid which is specifically prepared for human consumption":"People's Republic of China"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "IUWU0", "col1": "hot dog", "col2": null, "col3": "Australia", "col4": null, "col5": null, "col6": null, "col7": null, "col8": "2004-02-01T00:00:00Z", "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU1", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": "https://WWW.bettycrocker.com/products/hamburger~he1per", "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "1UWUZ", "col1": "beef", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU3", "col1": null, "col2": "Rustlers (convenience food)", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU4", "col1": "beef", "col2": "Salisbury steaks", "col3": "United States of America", "col4": null, "col5": null, "col6": "James H. Salisbury", "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU5", "col1": "bacon", "col2": null, "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU6", "col1": "chili", "col2": null, "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU7", "col1": "salsa golf, ground pork", "col2": "Ghimichurri burger", "col3": "Dominican Republic", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": "chimichurri", "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU8", "col1": "salad, Emmental, patty, onion, tomato", "col2": "Big Tasty", "col3": null, "col4": "McDonald\u2019s", "col5": null, "col6": null, "col7": null, "col8": "2003-01-01T00:00:00Z", "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU9", "col1": "tatsutaage", "col2": "Chicken tatsuta", "col3": null, "col4": "McDonald's Japan", "col5": "1991-04-01T00:00:00Z", "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU10", "col1": null, "col2": null, "col3": "United Kingdom", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "Scottish cuisine", "col12": null, "col13": null, "col14": null}, {"col0": "IUWU11", "col1": "1enti1", "col2": null, "col3": "Pakistan", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": "http://commons.wikimedia.org/wiki/Special:FilePath/LL-Q9610%20%28ben%29-Titodutta-%E0%A6%AC%E0%A6%BE%E0%A6%A8%20%E0%A6%95%E0%A6%BE%E0%A6%AC%E0%A6%BE%E0%A6%AC.wav", "col13": null, "col14": null}, {"col0": "IUWU12", "col1": null, "col2": "Quarter Pounder", "col3": null, "col4": "McDonald\u2019s", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU13", "col1": null, "col2": null, "col3": null, "col4": "8urger Ring", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU14", "col1": null, "col2": "Whopper", "col3": null, "col4": "Burger King", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU15", "col1": null, "col2": null, "col3": null, "col4": "Hardee's", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU16", "col1": "kimchi", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU17", "col1": null, "col2": "Grilletta", "col3": "German Democratic Republic", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU18", "col1": "cheese, bacon, Allium cepa", "col2": null, "col3": null, "col4": "McDonald\u2019s", "col5": null, "col6": null, "col7": null, "col8": null, "col9": "https://www.mcdonalds.ch/de/menuekarte/klassiker/burger/cbo/", "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU19", "col1": null, "col2": null, "col3": null, "col4": "McDonald\u2019s", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "1UWUZ()", "col1": "bun", "col2": "Slider (sandwich)", "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU21", "col1": null, "col2": "Mega Mac", "col3": null, "col4": "McDonald\u2019s", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "1UWUZZ", "col1": null, "col2": null, "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU23", "col1": "Bison bison, bison meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU24", "col1": null, "col2": null, "col3": null, "col4": "Wendy's", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU25", "col1": "cheese, patty, bun", "col2": "Cheeseburgers", "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": "http://commons.wikimedia.org/wiki/Special:FilePath/Fr-cheeseburger.ogg, http://commons.wikimedia.org/wiki/Special:FilePath/Nl-cheeseburger.ogg", "col13": null, "col14": null}, {"col0": "IUWU26", "col1": null, "col2": "Sasebo burger", "col3": "Japan", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": "Sasebo", "col14": null}, {"col0": "IUWU27", "col1": "teriyaki sauce", "col2": "Teriyaki burgers", "col3": null, "col4": null, "col5": "1973-01-01T00:00:00Z", "col6": "teriyakii", "col7": "Satoshi Sakurada", "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU28", "col1": null, "col2": null, "col3": null, "col4": "McDonald\u2019s", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU29", "col1": "rice", "col2": "Rice burgers", "col3": "Japan", "col4": null, "col5": "1987-01-01T00:00:00Z", "col6": null, "col7": "MOS Burger", "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU30", "col1": "hamburger", "col2": "Jucy Lucy", "col3": "United 5tates of America", "col4": null, "col5": null, "col6": null, "col7": "Matt's Bar", "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU31", "col1": null, "col2": "Big King", "col3": null, "col4": "Burger King", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": "Te T\u0101tua a Riukiuta", "col11": null, "col12": null, "col13": null, "col14": "United States of America"}, {"col0": "1UWU3Z", "col1": "rye bread", "col2": null, "col3": "United 5tates of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU33", "col1": null, "col2": "McDonald's tsukimi burgers", "col3": null, "col4": "McDonald\u2019s", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU34", "col1": "bison meat", "col2": "Bison burgers", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU35", "col1": "meat", "col2": "BK Stacker", "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU36", "col1": null, "col2": null, "col3": "Japan", "col4": null, "col5": "Z()()q~()|~3()T()():()():()()2", "col6": "Yokosuka", "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": "Yokosuka", "col14": "Japan"}, {"col0": "IUWU37", "col1": null, "col2": "McGriddle", "col3": null, "col4": "McDonald\u2019s", "col5": "2003-01-01T00:00:00Z", "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU38", "col1": "bread ro11, pork meat, chicken meat, horse meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "cuisine of Belgium", "col12": null, "col13": null, "col14": null}, {"col0": "IUWU39", "col1": "pilaf", "col2": "Loco moco", "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}, {"col0": "IUWU40", "col1": null, "col2": null, "col3": "United States of America", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": null, "col12": null, "col13": null, "col14": null}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"IUWU0","col1":"hot dog","col2":null,"col3":"Australia","col4":null,"col5":null,"col6":null,"col7":null,"col8":"2004-02-01T00:00:00Z","col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU1","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":"https:\/\/www.bettycrocker.com\/products\/hamburger-helper","col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU2","col1":"beef","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU3","col1":null,"col2":"Rustlers (convenience food)","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU4","col1":"beef","col2":"Salisbury steaks","col3":"United States of America","col4":null,"col5":null,"col6":"James H. Salisbury","col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU5","col1":"bacon","col2":null,"col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU6","col1":"chili","col2":null,"col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU7","col1":"salsa golf, ground pork","col2":"Chimichurri burger","col3":"Dominican Republic","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":"chimichurri","col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU8","col1":"salad, Emmental, patty, onion, tomato","col2":"Big Tasty","col3":null,"col4":"McDonald’s","col5":null,"col6":null,"col7":null,"col8":"2003-01-01T00:00:00Z","col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU9","col1":"tatsutaage","col2":"Chicken tatsuta","col3":null,"col4":"McDonald's Japan","col5":"1991-04-01T00:00:00Z","col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU10","col1":null,"col2":null,"col3":"United Kingdom","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"Scottish cuisine","col12":null,"col13":null,"col14":null},{"col0":"IUWU11","col1":"lentil","col2":null,"col3":"Pakistan","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":"http:\/\/commons.wikimedia.org\/wiki\/Special:FilePath\/LL-Q9610%20%28ben%29-Titodutta-%E0%A6%AC%E0%A6%BE%E0%A6%A8%20%E0%A6%95%E0%A6%BE%E0%A6%AC%E0%A6%BE%E0%A6%AC.wav","col13":null,"col14":null},{"col0":"IUWU12","col1":null,"col2":"Quarter Pounder","col3":null,"col4":"McDonald’s","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU13","col1":null,"col2":null,"col3":null,"col4":"Burger King","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU14","col1":null,"col2":"Whopper","col3":null,"col4":"Burger King","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU15","col1":null,"col2":null,"col3":null,"col4":"Hardee's","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU16","col1":"kimchi","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU17","col1":null,"col2":"Grilletta","col3":"German Democratic Republic","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU18","col1":"cheese, bacon, Allium cepa","col2":null,"col3":null,"col4":"McDonald’s","col5":null,"col6":null,"col7":null,"col8":null,"col9":"https:\/\/www.mcdonalds.ch\/de\/menuekarte\/klassiker\/burger\/cbo\/","col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU19","col1":null,"col2":null,"col3":null,"col4":"McDonald’s","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU20","col1":"bun","col2":"Slider (sandwich)","col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU21","col1":null,"col2":"Mega Mac","col3":null,"col4":"McDonald’s","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU22","col1":null,"col2":null,"col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU23","col1":"Bison bison, bison meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU24","col1":null,"col2":null,"col3":null,"col4":"Wendy's","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU25","col1":"cheese, patty, bun","col2":"Cheeseburgers","col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":"http:\/\/commons.wikimedia.org\/wiki\/Special:FilePath\/Fr-cheeseburger.ogg, http:\/\/commons.wikimedia.org\/wiki\/Special:FilePath\/Nl-cheeseburger.ogg","col13":null,"col14":null},{"col0":"IUWU26","col1":null,"col2":"Sasebo burger","col3":"Japan","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":"Sasebo","col14":null},{"col0":"IUWU27","col1":"teriyaki sauce","col2":"Teriyaki burgers","col3":null,"col4":null,"col5":"1973-01-01T00:00:00Z","col6":"teriyakii","col7":"Satoshi Sakurada","col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU28","col1":null,"col2":null,"col3":null,"col4":"McDonald’s","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU29","col1":"rice","col2":"Rice burgers","col3":"Japan","col4":null,"col5":"1987-01-01T00:00:00Z","col6":null,"col7":"MOS Burger","col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU30","col1":"hamburger","col2":"Jucy Lucy","col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":"Matt's Bar","col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU31","col1":null,"col2":"Big King","col3":null,"col4":"Burger King","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":"Te Tātua a Riukiuta","col11":null,"col12":null,"col13":null,"col14":"United States of America"},{"col0":"IUWU32","col1":"rye bread","col2":null,"col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU33","col1":null,"col2":"McDonald's tsukimi burgers","col3":null,"col4":"McDonald’s","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU34","col1":"bison meat","col2":"Bison burgers","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU35","col1":"meat","col2":"BK Stacker","col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU36","col1":null,"col2":null,"col3":"Japan","col4":null,"col5":"2009-01-30T00:00:00Z","col6":"Yokosuka","col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":"Yokosuka","col14":"Japan"},{"col0":"IUWU37","col1":null,"col2":"McGriddle","col3":null,"col4":"McDonald’s","col5":"2003-01-01T00:00:00Z","col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU38","col1":"bread roll, pork meat, chicken meat, horse meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"cuisine of Belgium","col12":null,"col13":null,"col14":null},{"col0":"IUWU39","col1":"pilaf","col2":"Loco moco","col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null},{"col0":"IUWU40","col1":null,"col2":null,"col3":"United States of America","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":null,"col12":null,"col13":null,"col14":null}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Line 2", "col1": "Chongqing Rail Transit (Group) Co., Ltd.", "col2": "2005-06-18"}, {"col0": "Line 1", "col1": "Scomi", "col2": null}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Line 2","col1":"Chongqing Rail Transit (Group) Co., Ltd.","col2":"2005-06-18"},{"col0":"Line 1","col1":"Scomi","col2":null}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Hargpies", "col1": 42.49344}, {"col0": "Dvor", "col1": 502.3755}, {"col0": "Rostbjnica", "col1": 8512.0}, {"col0": "Jian", "col1": 3317.74209}, {"col0": "Xapur", "col1": 5250.931}, {"col0": "Ipidles", "col1": 1708.707}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Hargpies","col1":42.49344},{"col0":"Dvor","col1":502.3755},{"col0":"Kostbjnica","col1":8512.0},{"col0":"Jian","col1":3317.74209},{"col0":"Xapur","col1":5250.931},{"col0":"Ipidles","col1":1708.707}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "FWOL0", "col1": "Allium", "col2": "https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=2413", "col3": "edible plant or part of a plant, involved in cooking"}, {"col0": "FWOL1", "col1": "Brassica oleracea", "col2": "https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=319629", "col3": "?"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"FWOL0","col1":"Allium","col2":"https:\/\/npgsweb.ars-grin.gov\/gringlobal\/taxonomydetail.aspx?id=2413","col3":"edible plant or part of a plant, involved in cooking"},{"col0":"FWOL1","col1":"Brassica oleracea","col2":"https:\/\/npgsweb.ars-grin.gov\/gringlobal\/taxonomydetail.aspx?id=319629","col3":"?"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "PEXI0", "col1": "Croton megalocarpus", "col2": null, "col3": null, "col4": "?"}, {"col0": "PEXI1", "col1": "Croton cascarilloides", "col2": "8007-06-5", "col3": "N81EA2A6NP", "col4": "?"}, {"col0": "PEXI2", "col1": "Croton tiglium", "col2": "8001-28-3", "col3": "WK97EQG57S", "col4": "any of a varity of oils derived from plants of genus Croton"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"PEXI0","col1":"Croton megalocarpus","col2":null,"col3":null,"col4":"?"},{"col0":"PEXI1","col1":"Croton cascarilloides","col2":"8007-06-5","col3":"N81EA2A6NP","col4":"?"},{"col0":"PEXI2","col1":"Croton tiglium","col2":"8001-28-3","col3":"WK97EQG57S","col4":"any of a varity of oils derived from plants of genus Croton"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Reinfelden-Nollingen", "col1": "Germany"}, {"col0": "mfilochia Munjcipal Unit", "col1": "Greece"}, {"col0": "Gorgopotamos Municipa Unit", "col1": "Greece"}, {"col0": "DreWtz", "col1": "Germany"}, {"col0": "hst\u00e4dt", "col1": "Germany"}, {"col0": "Qppem", "col1": "Belgium"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Reinfelden-Nollingen","col1":"Germany"},{"col0":"mfilochia Munjcipal Unit","col1":"Greece"},{"col0":"Gorgopotamos Municipa Unit","col1":"Greece"},{"col0":"Drewtz","col1":"Germany"},{"col0":"hstädt","col1":"Germany"},{"col0":"Qppem","col1":"Belgium"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Arviat A", "col1": 10.4}, {"col0": "Arviat A", "col1": 10.4}, {"col0": "Ekati A", "col1": 468.2}, {"col0": "Lutselk'E A", "col1": 178.6}, {"col0": "Yellowknife A", "col1": 205.7}, {"col0": "4e11oWknife A", "col1": 205.7}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Arviat A","col1":10.4},{"col0":"Arviat A","col1":10.4},{"col0":"Ekati A","col1":468.2},{"col0":"Lutselk'E A","col1":178.6},{"col0":"Yellowknife A","col1":205.7},{"col0":"Yellowknife A","col1":205.7}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "specific food preparation with cooking finished, and ready to eat, or be served": "Met Museum artworks on display"}, {"Prop0": "Prop2", "specific food preparation with cooking finished, and ready to eat, or be served": "Metropolitan Museum of Art, Asian Art"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","specific food preparation with cooking finished, and ready to eat, or be served":"Met Museum artworks on display"},{"Prop0":"Prop2","specific food preparation with cooking finished, and ready to eat, or be served":"Metropolitan Museum of Art, Asian Art"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Sulz", "col1": 3.02, "col2": null, "col3": 2527.0}, {"col0": "Irdning", "col1": 21.95, "col2": 205.0, "col3": 2749.0}, {"col0": "Neuaigen", "col1": 11.3423, "col2": null, "col3": 377.0}, {"col0": "Motten", "col1": "3.4q", "col2": 72.0, "col3": null}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Sulz","col1":3.02,"col2":null,"col3":2527.0},{"col0":"Irdning","col1":21.95,"col2":205.0,"col3":2749.0},{"col0":"Neuaigen","col1":11.3423,"col2":null,"col3":377.0},{"col0":"Motten","col1":3.49,"col2":72.0,"col3":null}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "specific food preparation with cooking finished, and ready to eat, or be served": "Goulash soup"}, {"Prop0": "Prop2", "specific food preparation with cooking finished, and ready to eat, or be served": "Hungary"}, {"Prop0": "Prop3", "specific food preparation with cooking finished, and ready to eat, or be served": "soup"}, {"Prop0": "Prop4", "specific food preparation with cooking finished, and ready to eat, or be served": "beef, paprika, onion"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","specific food preparation with cooking finished, and ready to eat, or be served":"Goulash soup"},{"Prop0":"Prop2","specific food preparation with cooking finished, and ready to eat, or be served":"Hungary"},{"Prop0":"Prop3","specific food preparation with cooking finished, and ready to eat, or be served":"soup"},{"Prop0":"Prop4","specific food preparation with cooking finished, and ready to eat, or be served":"beef, paprika, onion"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "YMKS0", "col1": "carrot, rice, meat, Allium cepa, vegetable oil", "col2": "Category:Pilaf", "col3": null, "col4": null, "col5": null, "col6": "Brockhaus and Efron Encyclopedic Dictionary, Small Brockhaus and Efron Encyclopedic Dictionary", "col7": null, "col8": null, "col9": null, "col10": 6499443011.0, "col11": "dish made from rice"}, {"col0": "YMKS1", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS2", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS3", "col1": "rice, chicken meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS4", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS5", "col1": null, "col2": "Category:Pakistani rice dishes", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS6", "col1": "herb", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS7", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS8", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "4MR5q", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS10", "col1": "rice, European anchovy", "col2": null, "col3": "Turkish cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS11", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": "Wiki Loves Cultura Popular Brasil - Culin\u00e1ria", "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS12", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS13", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS14", "col1": null, "col2": "Gategory:Gooked rice", "col3": "sushi", "col4": null, "col5": null, "col6": "Gujin Tushu Jicheng", "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS15", "col1": "rice, beef, goat meat, fish as food, chicken meat, shrimp or prawn", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS16", "col1": "rice, beef", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS17", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS18", "col1": "g\u1ea5c", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS19", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "VMR5Z()", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS21", "col1": "Cocos nucifera, Oryza, rice flour", "col2": null, "col3": "cuisine of Kerala", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS22", "col1": null, "col2": null, "col3": null, "col4": "Fast JaVa, Cresik", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS23", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS24", "col1": "rice, egg", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS25", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS26", "col1": "g1utinous rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS27", "col1": "pea, risotto rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS28", "col1": null, "col2": null, "col3": null, "col4": "West Java", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS29", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": "Wiki Loves Cultura Popular Brasil - Culin\u00e1ria", "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS30", "col1": "rice, cod", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS31", "col1": "rice, chicken meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS32", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS33", "col1": null, "col2": null, "col3": "Turkish cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS34", "col1": null, "col2": null, "col3": null, "col4": "West Java, Tasikmalaya", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS35", "col1": "rice, tonkatsu", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "7MR53G", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS37", "col1": "water, rice, table salt, saffron, olive oil, blood sausage, pork ribs, potato, tomato, chickpea, garlic", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS38", "col1": "rice, goat meat, chicken meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS39", "col1": null, "col2": "Category:Rice cakes", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS40", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS41", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS42", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS43", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS44", "col1": null, "col2": "Gategory:Kice ba11s", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS45", "col1": null, "col2": null, "col3": null, "col4": "Bali", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS46", "col1": null, "col2": null, "col3": null, "col4": null, "col5": "Western Asia, South Asia", "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS47", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": "rice pudding", "col10": null, "col11": "?"}, {"col0": "YMKS48", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS49", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS50", "col1": "glutinous rice", "col2": "Category:X\u00f4i", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS51", "col1": "curry", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS52", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS53", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": "Eujian", "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS54", "col1": "rice, djon djon", "col2": null, "col3": "Haitian cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS55", "col1": null, "col2": null, "col3": null, "col4": "East Java, West Java, Bandung", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS56", "col1": null, "col2": null, "col3": "Malaysian cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS57", "col1": "lamb meat, jameed", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS58", "col1": "Oryza sativa", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS59", "col1": "youtiao", "col2": null, "col3": null, "col4": null, "col5": "TaiWan, Hong Rong", "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS60", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS61", "col1": null, "col2": null, "col3": "Philippine cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS62", "col1": "rice, chicken meat, chicken egg", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": "parent and chi1d", "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS63", "col1": "rice, baharat, fish as food, onion", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS64", "col1": "cooked rice, char siu", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS65", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS66", "col1": "rice, tomato, beef, salsa, Lactuca", "col2": null, "col3": null, "col4": null, "col5": "Okinawa Prefecture", "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS67", "col1": "rice, chicken meat", "col2": null, "col3": "Chilean cuisine, Puerto Rican cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS68", "col1": "rice", "col2": "Category:Risotto", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": 6499445011.0, "col11": "dish made from rice"}, {"col0": "4MR5Gq", "col1": "glutinous rice, Juncus effusus, Sasa", "col2": "Category:Zongzi", "col3": null, "col4": null, "col5": null, "col6": "Gujin Tushu Jicheng", "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS70", "col1": "rice and beans", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS71", "col1": "rice", "col2": "Category:Rice pudding", "col3": "Turkish cuisine, Peruvian cuisine, Moroccan cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": "congee", "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS72", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS73", "col1": "rice, almond, chicken meat, yufka bread", "col2": null, "col3": "Turkish cuisine", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS74", "col1": "rice, goat meat, chicken meat, lemon juice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS75", "col1": "lontong, tahu goreng, lentho", "col2": null, "col3": null, "col4": "East Java, Sidoarjo, Surabaya", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS76", "col1": "rice, Allium, olive oil, Lens, Carum, Oryza, fried onion, Lentilles", "col2": null, "col3": "Cyprus, Near East", "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "VMR577", "col1": "Vitis", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS78", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS79", "col1": "rice, beef", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS80", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "VMR5&|", "col1": null, "col2": "Category:Japanese rice dishes", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS82", "col1": null, "col2": null, "col3": null, "col4": "West Sumatra", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS83", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS84", "col1": "rice", "col2": "Category:Juk, Category:Congee", "col3": "Indian cuisine, Japanese cuisine, Korean cuisine, Taiwanese cuisine, Vietnamese cuisine, Thai cuisine, Hong Kong cuisine, Burmese cuisine, Buddhist cuisine, Tamil cuisine, Chinese cuisine", "col4": null, "col5": null, "col6": "Gujin Tushu Jicheng", "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS85", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS86", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS87", "col1": "Oryza sativa", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS88", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS89", "col1": "rice, potato", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS90", "col1": null, "col2": "Category:Nian gao", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "VMR5q|", "col1": "guk, bap", "col2": "Gategory:Cukbap", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS92", "col1": "pilaf", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS93", "col1": "coconut", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS94", "col1": "carrot, potato, curry, beef, cooked rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS95", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS96", "col1": "rice, goat meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS97", "col1": null, "col2": "Category:Chicken and rice dishes", "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS98", "col1": "rice, potato", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS99", "col1": "beef, cooked rice, demi-glace, onion", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS100", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS101", "col1": "rice flour", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS102", "col1": "glutinous rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": "tree peony, Lespedeza bico1or", "col8": null, "col9": "botamochi", "col10": null, "col11": "?"}, {"col0": "YMKS103", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS104", "col1": null, "col2": null, "col3": "1ndonesian cuisine", "col4": "Banten, West Java", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "7MR5|()S", "col1": "rice, goat meat, chicken meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS106", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS107", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS108", "col1": "rice, meat, onion", "col2": null, "col3": "Turkish cuisine", "col4": null, "col5": "\u00c7orum ProVince", "col6": null, "col7": "\u0130skilip", "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS109", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS110", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "4MR5|||", "col1": "ropa vieja, frijoles negros, tajada, white rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS112", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS113", "col1": null, "col2": null, "col3": null, "col4": null, "col5": "Kasari", "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "7MR5||4", "col1": "rice, table salt, oil, Cicer arietinum, beef, tomato paste", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS115", "col1": "kidney bean", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS116", "col1": null, "col2": null, "col3": null, "col4": "Muko Muko", "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS117", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS118", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS119", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS120", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "7MR5|Z|", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": "Wiki Loves Cultura Popular Brasil - Culin\u00e1ria", "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS122", "col1": "turkey meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS123", "col1": "rice", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "dish made from rice"}, {"col0": "YMKS124", "col1": null, "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}, {"col0": "YMKS125", "col1": "chicken meat", "col2": null, "col3": null, "col4": null, "col5": null, "col6": null, "col7": null, "col8": null, "col9": null, "col10": null, "col11": "?"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"YMKS0","col1":"carrot, rice, meat, Allium cepa, vegetable oil","col2":"Category:Pilaf","col3":null,"col4":null,"col5":null,"col6":"Brockhaus and Efron Encyclopedic Dictionary, Small Brockhaus and Efron Encyclopedic Dictionary","col7":null,"col8":null,"col9":null,"col10":6499443011.0,"col11":"dish made from rice"},{"col0":"YMKS1","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS2","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS3","col1":"rice, chicken meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS4","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS5","col1":null,"col2":"Category:Pakistani rice dishes","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS6","col1":"herb","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS7","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS8","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS9","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS10","col1":"rice, European anchovy","col2":null,"col3":"Turkish cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS11","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":"Wiki Loves Cultura Popular Brasil - Culinária","col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS12","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS13","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS14","col1":null,"col2":"Category:Cooked rice","col3":"sushi","col4":null,"col5":null,"col6":"Gujin Tushu Jicheng","col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS15","col1":"rice, beef, goat meat, fish as food, chicken meat, shrimp or prawn","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS16","col1":"rice, beef","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS17","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS18","col1":"gấc","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS19","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS20","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS21","col1":"Cocos nucifera, Oryza, rice flour","col2":null,"col3":"cuisine of Kerala","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS22","col1":null,"col2":null,"col3":null,"col4":"East Java, Gresik","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS23","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS24","col1":"rice, egg","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS25","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS26","col1":"glutinous rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS27","col1":"pea, risotto rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS28","col1":null,"col2":null,"col3":null,"col4":"West Java","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS29","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":"Wiki Loves Cultura Popular Brasil - Culinária","col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS30","col1":"rice, cod","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS31","col1":"rice, chicken meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS32","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS33","col1":null,"col2":null,"col3":"Turkish cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS34","col1":null,"col2":null,"col3":null,"col4":"West Java, Tasikmalaya","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS35","col1":"rice, tonkatsu","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS36","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS37","col1":"water, rice, table salt, saffron, olive oil, blood sausage, pork ribs, potato, tomato, chickpea, garlic","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS38","col1":"rice, goat meat, chicken meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS39","col1":null,"col2":"Category:Rice cakes","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS40","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS41","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS42","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS43","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS44","col1":null,"col2":"Category:Rice balls","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS45","col1":null,"col2":null,"col3":null,"col4":"Bali","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS46","col1":null,"col2":null,"col3":null,"col4":null,"col5":"Western Asia, South Asia","col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS47","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":"rice pudding","col10":null,"col11":"?"},{"col0":"YMKS48","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS49","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS50","col1":"glutinous rice","col2":"Category:Xôi","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS51","col1":"curry","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS52","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS53","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":"Fujian","col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS54","col1":"rice, djon djon","col2":null,"col3":"Haitian cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS55","col1":null,"col2":null,"col3":null,"col4":"East Java, West Java, Bandung","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS56","col1":null,"col2":null,"col3":"Malaysian cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS57","col1":"lamb meat, jameed","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS58","col1":"Oryza sativa","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS59","col1":"youtiao","col2":null,"col3":null,"col4":null,"col5":"Taiwan, Hong Kong","col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS60","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS61","col1":null,"col2":null,"col3":"Philippine cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS62","col1":"rice, chicken meat, chicken egg","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":"parent and child","col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS63","col1":"rice, baharat, fish as food, onion","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS64","col1":"cooked rice, char siu","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS65","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS66","col1":"rice, tomato, beef, salsa, Lactuca","col2":null,"col3":null,"col4":null,"col5":"Okinawa Prefecture","col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS67","col1":"rice, chicken meat","col2":null,"col3":"Chilean cuisine, Puerto Rican cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS68","col1":"rice","col2":"Category:Risotto","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":6499445011.0,"col11":"dish made from rice"},{"col0":"YMKS69","col1":"glutinous rice, Juncus effusus, Sasa","col2":"Category:Zongzi","col3":null,"col4":null,"col5":null,"col6":"Gujin Tushu Jicheng","col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS70","col1":"rice and beans","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS71","col1":"rice","col2":"Category:Rice pudding","col3":"Turkish cuisine, Peruvian cuisine, Moroccan cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":"congee","col10":null,"col11":"dish made from rice"},{"col0":"YMKS72","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS73","col1":"rice, almond, chicken meat, yufka bread","col2":null,"col3":"Turkish cuisine","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS74","col1":"rice, goat meat, chicken meat, lemon juice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS75","col1":"lontong, tahu goreng, lentho","col2":null,"col3":null,"col4":"East Java, Sidoarjo, Surabaya","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS76","col1":"rice, Allium, olive oil, Lens, Carum, Oryza, fried onion, Lentilles","col2":null,"col3":"Cyprus, Near East","col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS77","col1":"Vitis","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS78","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS79","col1":"rice, beef","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS80","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS81","col1":null,"col2":"Category:Japanese rice dishes","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS82","col1":null,"col2":null,"col3":null,"col4":"West Sumatra","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS83","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS84","col1":"rice","col2":"Category:Juk, Category:Congee","col3":"Indian cuisine, Japanese cuisine, Korean cuisine, Taiwanese cuisine, Vietnamese cuisine, Thai cuisine, Hong Kong cuisine, Burmese cuisine, Buddhist cuisine, Tamil cuisine, Chinese cuisine","col4":null,"col5":null,"col6":"Gujin Tushu Jicheng","col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS85","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS86","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS87","col1":"Oryza sativa","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS88","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS89","col1":"rice, potato","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS90","col1":null,"col2":"Category:Nian gao","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS91","col1":"guk, bap","col2":"Category:Gukbap","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS92","col1":"pilaf","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS93","col1":"coconut","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS94","col1":"carrot, potato, curry, beef, cooked rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS95","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS96","col1":"rice, goat meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS97","col1":null,"col2":"Category:Chicken and rice dishes","col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS98","col1":"rice, potato","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS99","col1":"beef, cooked rice, demi-glace, onion","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS100","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS101","col1":"rice flour","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS102","col1":"glutinous rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":"tree peony, Lespedeza bicolor","col8":null,"col9":"botamochi","col10":null,"col11":"?"},{"col0":"YMKS103","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS104","col1":null,"col2":null,"col3":"Indonesian cuisine","col4":"Banten, West Java","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS105","col1":"rice, goat meat, chicken meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS106","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS107","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS108","col1":"rice, meat, onion","col2":null,"col3":"Turkish cuisine","col4":null,"col5":"Çorum Province","col6":null,"col7":"İskilip","col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS109","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS110","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS111","col1":"ropa vieja, frijoles negros, tajada, white rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS112","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS113","col1":null,"col2":null,"col3":null,"col4":null,"col5":"Kasari","col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS114","col1":"rice, table salt, oil, Cicer arietinum, beef, tomato paste","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS115","col1":"kidney bean","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS116","col1":null,"col2":null,"col3":null,"col4":"Muko Muko","col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS117","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS118","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS119","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS120","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS121","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":"Wiki Loves Cultura Popular Brasil - Culinária","col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS122","col1":"turkey meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS123","col1":"rice","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"dish made from rice"},{"col0":"YMKS124","col1":null,"col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"},{"col0":"YMKS125","col1":"chicken meat","col2":null,"col3":null,"col4":null,"col5":null,"col6":null,"col7":null,"col8":null,"col9":null,"col10":null,"col11":"?"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Bglizg", "col1": null}, {"col0": "Lordan", "col1": null}, {"col0": "Republic of the ongo", "col1": null}, {"col0": "Guatemcla", "col1": null}, {"col0": "ermany", "col1": 2.3161}, {"col0": "Sria", "col1": null}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Bglizg","col1":null},{"col0":"Lordan","col1":null},{"col0":"Republic of the ongo","col1":null},{"col0":"Guatemcla","col1":null},{"col0":"ermany","col1":2.3161},{"col0":"Sria","col1":null}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"Prop0": "Prop1", "cheese from France": "appellation d'origine contr\u00f4l\u00e9e, protected designation of origin"}, {"Prop0": "Prop2", "cheese from France": "3S()()()()()"}, {"Prop0": "Prop3", "cheese from France": "France"}, {"Prop0": "Prop4", "cheese from France": "http://www.pont-leveque-aoc.org/"}, {"Prop0": "Prop5", "cheese from France": "Entity[\"FoodType\", \"PontLEveque\"]"}, {"Prop0": "Prop6", "cheese from France": "France"}, {"Prop0": "Prop7", "cheese from France": "Z33Z"}, {"Prop0": "Prop8", "cheese from France": "cow's milk"}, {"Prop0": "Prop9", "cheese from France": "Calvados, Eure, Manche, Orne, Seine-Maritime"}, {"Prop0": "Prop10", "cheese from France": "Pont-l'\u00e9v\u00eaque (cheese)"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"Prop0":"Prop1","cheese from France":"appellation d'origine contrôlée, protected designation of origin"},{"Prop0":"Prop2","cheese from France":"3500000"},{"Prop0":"Prop3","cheese from France":"France"},{"Prop0":"Prop4","cheese from France":"http:\/\/www.pont-leveque-aoc.org\/"},{"Prop0":"Prop5","cheese from France":"Entity[\"FoodType\", \"PontLEveque\"]"},{"Prop0":"Prop6","cheese from France":"France"},{"Prop0":"Prop7","cheese from France":"2332"},{"Prop0":"Prop8","cheese from France":"cow's milk"},{"Prop0":"Prop9","cheese from France":"Calvados, Eure, Manche, Orne, Seine-Maritime"},{"Prop0":"Prop10","cheese from France":"Pont-l'évêque (cheese)"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Guys", "col1": "1997-01-01"}, {"col0": "Signal to Noise", "col1": "1992-01-01"}, {"col0": "Level Up", "col1": "2011-01-01"}, {"col0": "Grandville", "col1": "2009-01-01"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Guys","col1":"1997-01-01"},{"col0":"Signal to Noise","col1":"1992-01-01"},{"col0":"Level Up","col1":"2011-01-01"},{"col0":"Grandville","col1":"2009-01-01"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Emirates Towers", "col1": 17, "col2": "high-tech architecture"}, {"col0": "Scotia Place", "col1": 8, "col2": "modern architecture"}, {"col0": "Emerald Towers", "col1": 18, "col2": "modern architecture"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Emirates Towers","col1":17,"col2":"high-tech architecture"},{"col0":"Scotia Place","col1":8,"col2":"modern architecture"},{"col0":"Emerald Towers","col1":18,"col2":"modern architecture"}]<|eot_id|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are tasked with correcting a corrupted JSON table dataset that contains several errors introduced by an Optical Character Recognition (OCR) process. These errors include, but are not limited to: 1. Misspelled text: OCR misinterpretations have resulted in incorrect spellings or symbols replacing valid characters in text-based fields. 2. Incorrect numbers: Numeric values are misrepresented, with random characters or incomplete/incorrect digits. 3. Confused patterns: Specific symbols or substrings such as `|`, `&`, and non-numeric characters have been mistakenly introduced into numeric fields. 4. Partial data: Fragments of numeric or text-based fields are observed due to poor OCR interpretation. Your goal is to recover the original structure and correct the data to reflect a valid and consistent table, ensuring accuracy and logical consistency based on contextual clues. ### Input: A JSON string representing a corrupted table dataset. For example: ```json [ {"col0": "Cuaru1hos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": "|G7S3G&", "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": "7G&", "col3": 168.0} ] ``` ### Expected Output: A corrected JSON string where all corrupted entries are fixed to reflect the intended original values. For example: ```json [ {"col0": "Guarulhos", "col1": 1324781, "col2": 759, "col3": 318.014}, {"col0": "Mecca", "col1": 1675368, "col2": 277, "col3": 760.0}, {"col0": "Bandung", "col1": 2875673, "col2": 768, "col3": 168.0} ] ``` ### Detailed Instructions: 1. Text Corrections: - Correct misspelled or misinterpreted text in `col0` using contextual knowledge and expected patterns (e.g., "Cuaru1hos" should be "Guarulhos"). - Validate place names, city names, or any other text-based entries using common naming conventions. 2. Numeric Corrections: - Remove non-numeric characters (`|`, `&`, letters, etc.) from fields expected to contain numbers (`col1`, `col2`, `col3`). - Restore valid numerical patterns where digits are fragmented or missing (e.g., "|G7S3G&" to "1675368"). 3. Pattern Alignment: - Ensure consistency across fields. For example: - `col2` values represent integer IDs or counts. - `col3` values represent float or double-type numbers. 4. Logical Context Validation: - If a column's values suggest specific constraints (e.g., a population column should have plausible ranges), ensure that the corrected values fall within reasonable bounds. 5. Output Format: - The corrected JSON should strictly follow the format of the original input while replacing incorrect values. 6. Assumptions: - Assume that the corrected data is logically consistent with the context of each field. - If ambiguities arise, use reasonable guesses based on examples provided or logical patterns. --- Evaluation: The success of the task will be measured by how accurately the corrected JSON table aligns with the intended structure and content, ensuring complete recovery from OCR-related corruption. <|eot_id|><|start_header_id|>user<|end_header_id|>[{"col0": "Die Lupe", "col1": "Brunswick"}, {"col0": "Katona Jozsef Theatre in Budapest", "col1": "Budapest District V"}, {"col0": "Chicago Theatre", "col1": "Chicago"}]<|eot_id|><|start_header_id|>assistant<|end_header_id|>[{"col0":"Die Lupe","col1":"Brunswick"},{"col0":"Katona Jozsef Theatre in Budapest","col1":"Budapest District V"},{"col0":"Chicago Theatre","col1":"Chicago"}]<|eot_id|>
README.md exists but content is empty.
Downloads last month
39