|
--- |
|
language: en |
|
license: mit |
|
source_datasets: https://doi.org/10.1016/j.cell.2024.03.027 |
|
task_categories: |
|
- tabular-classification |
|
tags: |
|
- drug_discovery |
|
- cysteine |
|
- chemistry |
|
- biology |
|
pretty_name: Cysteine Structure Database |
|
dataset_summary: >- |
|
structural data regarding ligandabale and non ligandable cysteins in ~6000 proteins along with probe interaction read outs. |
|
PROBE indicates one of three probes KB02, KB03, or KB05 |
|
citation: |- |
|
@article{ |
|
Takahashi_et_al_2024, |
|
author={Takahashi, Chong, Harrison, Bar-Peled, et al}, |
|
doi={10.1016/j.cell.2024.03.027}, |
|
journal={Cell}, |
|
number={10}, |
|
month={May} |
|
title={DrugMap: A quantitative pan-cancer analysis of Cysteine ligandability}, |
|
volume={187}, |
|
year={2024} |
|
url = {https://www.biorxiv.org/content/10.1101/2023.10.20.563287v1} |
|
} |
|
size_categories: |
|
- 1K<n<10K |
|
config_names: |
|
- KB02 |
|
- KB03 |
|
- KB05 |
|
configs: |
|
- config_name: KB02 |
|
data_files: |
|
- split: test |
|
path: KB02_data/structure.test_KB02.csv |
|
- split: train |
|
path: KB02_data/structure.train_KB02.csv |
|
- split: validation |
|
path: KB02_data/structure.validation_KB02.csv |
|
- config_name: KB03 |
|
data_files: |
|
- split: test |
|
path: KB03_data/structure.test_KB03.csv |
|
- split: train |
|
path: KB03_data/structure.train_KB03.csv |
|
- split: validation |
|
path: KB03_data/structure.validation_KB03.csv |
|
- config_name: KB05 |
|
data_files: |
|
- split: test |
|
path: KB05_data/structure.test_KB05.csv |
|
- split: train |
|
path: KB05_data/structure.train_KB05.csv |
|
- split: validation |
|
path: KB05_data/structure.validation_KB05.csv |
|
dataset_info: |
|
- config_name: KB02 |
|
features: |
|
- name: "uniprot_accession" |
|
dtype: string |
|
description: Uniprot ID of Protein |
|
- name: "pdb_id" |
|
dtype: string |
|
description: PDB Structure ID of Protein |
|
- name: "gene_names" |
|
dtype: string |
|
description: Gene Names Associated with Uniprot ID of Protein |
|
- name: "entry_name" |
|
dtype: string |
|
description: Entry Name of Protein Associated with Uniprot ID |
|
- name: "protein_names" |
|
dtype: string |
|
description: Protein Names Associated with Uniprot ID of Protein |
|
- name: "depth" |
|
dtype: float64 |
|
description: Depth of a Cystein in Protein Pocket (Å) |
|
- name: "absolute_sasa" |
|
dtype: float64 |
|
description: Absolute Solvent Accessible Surface Area (Å^2) |
|
- name: "hse_up" |
|
dtype: int64 |
|
description: Half-Sphere Exposure (up) |
|
- name: "hse_down" |
|
dtype: int64 |
|
description: Half-Sphere Exposure (down) |
|
- name: "coord_number" |
|
dtype: int64 |
|
description: coordination number |
|
- name: "rsa" |
|
dtype: float64 |
|
description: Relative Solvent Accessible Surface Area (Å^2) |
|
- name: "h_nho1" |
|
dtype: float64 |
|
description: Estimated h_nho1 energy (from database of secondary structure assignments in proteins-- DSSP) |
|
- name: "h_ohn1" |
|
dtype: float64 |
|
description: Estimated h_ohn1 energy (DSSP) |
|
- name: "h_nho2" |
|
dtype: float64 |
|
description: Estimated h_nho2 energy (DSSP) |
|
- name: "h_ohn2" |
|
dtype: float64 |
|
description: Estimated h_ohn2 energy (DSSP) |
|
- name: "tco" |
|
dtype: float64 |
|
description: TCO (DSSP) |
|
- name: "kappa" |
|
dtype: float64 |
|
description: Kappa (DSSP) |
|
- name: "alpha" |
|
dtype: float64 |
|
description: Alpha (DSSP) |
|
- name: "phi" |
|
dtype: float64 |
|
description: Phi (DSSP) |
|
- name: "psi" |
|
dtype: float64 |
|
description: Psi (DSSP) |
|
- name: "pocket" |
|
dtype: float64 |
|
description: Pocket Volume (Å^3) |
|
- name: "interface" |
|
dtype: bool |
|
description: Cysteine Presence in Protein Interface (TRUE or FALSE) |
|
- name: "basic" |
|
dtype: float64 |
|
description: Local Basic Content (Fraction of Local Neighbors) |
|
- name: "acidic" |
|
dtype: float64 |
|
description: Local Acidic Content (Fraction of Local Neighbors) |
|
- name: "polar" |
|
dtype: float64 |
|
description: Local Polar Content (Fraction of Local Neighbors) |
|
- name: "cysteine" |
|
dtype: float64 |
|
description: Local Cysteine Content (Fraction of Local Neighbors) |
|
- name: "structural" |
|
dtype: float64 |
|
description: Local Structural Content (Fraction of Local Neighbors) |
|
- name: "aliphatic" |
|
dtype: float64 |
|
description: Local Aliphatic Content (Fraction of Local Neighbors) |
|
- name: "aromatic" |
|
dtype: float64 |
|
description: Local Aromatic Content (Fraction of Local Neighbors) |
|
- name: "is_active" |
|
dtype: bool |
|
description: Probe Interaction Fraction Thresholded to Classify Cysteines as Active or Not (TRUE or FALSE) |
|
- name: "struct_motif_B" |
|
dtype: bool |
|
description: Presense of Structural Motif B (DSSP) |
|
- name: "struct_motif_E" |
|
dtype: bool |
|
description: Presense of Structural Motif E (DSSP) |
|
- name: "struct_motif_G" |
|
dtype: bool |
|
description: Presense of Structural Motif G (DSSP) |
|
- name: "struct_motif_H" |
|
dtype: bool |
|
description: Presense of Structural Motif H (DSSP) |
|
- name: "struct_motif_I" |
|
dtype: bool |
|
description: Presense of Structural Motif I (DSSP) |
|
- name: "struct_motif_P" |
|
dtype: bool |
|
description: Presense of Structural Motif P (DSSP) |
|
- name: "struct_motif_S" |
|
dtype: bool |
|
description: Presense of Structural Motif S (DSSP) |
|
- name: "struct_motif_T" |
|
dtype: bool |
|
description: Presense of Structural Motif T (DSSP) |
|
- name: "ligand_name" |
|
dtype: string |
|
description: Name of Probe Interacting with Cysteine |
|
- name: "residue_number" |
|
dtype: int64 |
|
description: Residue Number of Cysteine |
|
- name: "ligand_smiles" |
|
dtype: string |
|
description: SMILES depiction of Probe Interacting with Cysteine |
|
splits: |
|
- name: train |
|
num_bytes: 979293 |
|
num_examples: 4685 |
|
- name: test |
|
num_bytes: 136187 |
|
num_examples: 651 |
|
- name: validation |
|
num_bytes: 245076 |
|
num_examples: 1172 |
|
|
|
--- |
|
|
|
# Cysteine Structure Database |
|
|
|
The [Cysteine Structure Database] is a dataset compiled of strucutral data for 6515 cysteine sites in hundreds of proteins. |
|
This dataset was [published in Cell](https://www.biorxiv.org/content/10.1101/2023.10.20.563287v1) |
|
and is also available at the official [DrugMap Github repo](https://github.com/bplab-compbio/DrugMap/tree/main). |
|
|
|
For each cysteine site, this database includes numerical values for Solvent Accessible Surface Area (SASA), Cysteine Depth, etc. |
|
Additionally, each cysteine site has a probe engagement score derived from isotopic tandem orthogonal proteolysis-activity-based protein profiling |
|
(isoTOP-ABPP) that is represented as True or False in this dataset for three probes: KB02, KB03, KB05. |
|
|
|
## Probes |
|
### KB02 |
|
SMILES: COC1=CC=C2C(CCCN2C(CCl)=O)=C1 |
|
Depiction: |
|
|
|
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6663058cf9690b71435e02ed%2FiDBhPa2i9QL_YjPuHBDtK.png%3C%2Fspan%3E)%3C!-- HTML_TAG_END --> |
|
|
|
### KB03 |
|
SMILES: FC(F)(F)C1=CC(C(F)(F)F)=CC(NC(CCl)=O)=C1 |
|
Depiction: |
|
|
|
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6663058cf9690b71435e02ed%2F81anebswZ2UDMHTM8XrVS.png%3C%2Fspan%3E)%3C!-- HTML_TAG_END --> |
|
|
|
### KB05 |
|
SMILES: O=C(C=C)N(C1=CC=C(Br)C=C1)C2=CC=CC=C2 |
|
Depiction: |
|
|
|
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6663058cf9690b71435e02ed%2F50sAyacIM2QPMDbr7PpdL.png%3C%2Fspan%3E)%3C!-- HTML_TAG_END --> |
|
|
|
## Quickstart Usage |
|
|
|
### Load a Dataset in Python |
|
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. |
|
Install the `datasets` library |
|
|
|
$ pip install datasets |
|
|
|
then, in Python, load the `datasets` library |
|
|
|
>>> import datasets |
|
|
|
and load one of the `Cysteine Structure Database` datasets, e.g., |
|
|
|
>>> KB03_data = datasets.load_dataset('ymanasa2000/DrugMap_Ligandability', name='KB03') |
|
Downloading readme: 100%|████████████████████████| 4.04k/4.04k [00:00<00:00, 281kB/s] |
|
Downloading data: 100%|████████████████████████| 30.5k/30.5k [00:00<00:00, 470kB/s] |
|
Downloading data: 100%|████████████████████████| 218k/218k [00:00<00:00, 2.55MB/s] |
|
Downloading data: 100%|████████████████████████| 54.8k/54.8k [00:00<00:00, 915kB/s] |
|
Generating test split: 100%|████████████████████████| 143/0 [00:00<00:00, 4939.35 examples/s] |
|
Generating train split: 100%|████████████████████████| 1029/0 [00:00<00:00, 40692.99 examples/s] |
|
Generating validation split: 100%|████████████████████████| 258/0 [00:00<00:00, 22803.78 examples/s] |
|
|
|
Then, inspect the loaded dataset |
|
|
|
>>> KB03_data |
|
DatasetDict({ |
|
test: Dataset({ |
|
features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'], |
|
num_rows: 143 |
|
}) |
|
train: Dataset({ |
|
features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'], |
|
num_rows: 1029 |
|
}) |
|
validation: Dataset({ |
|
features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'], |
|
num_rows: 258 |
|
}) |
|
}) |
|
|
|
### Use a Dataset to Train a Model |
|
One way to use the dataset is by training a Baseline Random Forest Classifier to predict intereaction of a cysteine with one of the three probes (KB02, KB03, KB05). |
|
In this example, we will train and test on KB03 data. |
|
|
|
First, install scikit-learn |
|
|
|
>>> pip install scikit-learn |
|
|
|
then load, split, featurize, fit and evaluate the Random Forest model |
|
|
|
from sklearn.ensemble import RandomForestClassifier |
|
import pandas as pd |
|
|
|
KB03_data = datasets.load_dataset('ymanasa2000/DrugMap_Ligandability', name='KB03') |
|
|
|
# split into train and test |
|
KB03_train = KB03_data['train'] |
|
KB03_test = KB03_data['test'] |
|
|
|
train_set = pd.DataFrame(KB03_train) |
|
test_set = pd.DataFrame(KB03_test) |
|
|
|
# featurize |
|
X_train = train_set.drop(columns=['site', 'KB03']) |
|
y_train = train_set['KB03'] |
|
|
|
X_test = test_set.drop(columns=['site', 'KB03']) |
|
y_test = test_set['KB03'] |
|
|
|
# fit |
|
model_1 = RandomForestClassifier() |
|
model_1.fit(X_train, y_train) |
|
|
|
# evaluate |
|
print(model_1.score(X_test, y_test)) # output: 0.5944 |
|
|
|
## About the Cysteine Structure Database |
|
|
|
### Features of the DB |
|
This DB features a csv with structural data for ~6,500 bindable cysteines in hundreds of protein active sites. Each cysteine has structural data such as, |
|
numerical values for Solvent Accessible Surface Area (SASA), Cysteine Depth, etc. |
|
Additionally, this DB contains probe read-outs from an experiment described in Takahashi_et_al_2024. They integrated the isotopic tandem orthogonal |
|
proteolysis-activity-based protein profiling (isoTOP-ABPP) platform with tandem mass tag (TMT)-based mass spectrometry quantification (iso-TMT) |
|
to measure cysteine reactivity. In this approach, cell lysates are first treated with cysteine-reactive “scout” compounds or vehicle control, |
|
allowing reactive cysteines a chance to form covalent adducts, and then this is followed by a chase with a pan-cysteine-reactive probe |
|
(iodoacetamide-desthiobiotin `DBIA`), which reacts with all remaining free cysteine thiolate groups. |
|
Crucially, cysteines that reacted with the scout compound will escape being tagged by DBIA. |
|
Ligandable cysteines are defined as those that are engaged (ε-value) >60% by cysteine-reactive compounds. |
|
|
|
### Data splits |
|
The authors of this dataset suggested using a `Stratified Split` via the train_test_split() method which was used to produce the datasets in this Hugging Face DB. |
|
|
|
### Citation |
|
Please use the following citation in any publication using our Cysteine Structure Dataset: |
|
|
|
```md |
|
@article{ |
|
Takahashi_et_al_2024, |
|
author={Takahashi, Chong, Harrison, Bar-Peled, et al}, |
|
doi={10.1016/j.cell.2024.03.027}, |
|
journal={Cell}, |
|
number={10}, |
|
month={May} |
|
title={DrugMap: A quantitative pan-cancer analysis of Cysteine ligandability}, |
|
volume={187}, |
|
year={2024} |
|
url = {https://www.biorxiv.org/content/10.1101/2023.10.20.563287v1} |
|
} |
|
``` |
|
|
|
|
|
|
|
|
|
|