metadata
dataset_info:
features:
- name: num_atoms
dtype: int64
- name: atomic_symbols
sequence: string
- name: pos
sequence:
sequence: float64
- name: charges
sequence: float64
- name: harmonic_oscillator_frequencies
sequence: float64
- name: smiles
dtype: string
- name: inchi
dtype: string
- name: A
dtype: float64
- name: B
dtype: float64
- name: C
dtype: float64
- name: mu
dtype: float64
- name: alpha
dtype: float64
- name: homo
dtype: float64
- name: lumo
dtype: float64
- name: gap
dtype: float64
- name: r2
dtype: float64
- name: zpve
dtype: float64
- name: u0
dtype: float64
- name: u
dtype: float64
- name: h
dtype: float64
- name: g
dtype: float64
- name: cv
dtype: float64
- name: canonical_smiles
dtype: string
- name: logP
dtype: float64
- name: qed
dtype: float64
- name: np_score
dtype: float64
- name: sa_score
dtype: float64
- name: ring_count
dtype: int64
- name: R3
dtype: int64
- name: R4
dtype: int64
- name: R5
dtype: int64
- name: R6
dtype: int64
- name: R7
dtype: int64
- name: R8
dtype: int64
- name: R9
dtype: int64
- name: single_bond
dtype: int64
- name: double_bond
dtype: int64
- name: triple_bond
dtype: int64
- name: aromatic_bond
dtype: int64
splits:
- name: train
num_bytes: 199395693
num_examples: 133885
download_size: 180380355
dataset_size: 199395693
Dataset Card for "QM9"
QM9 dataset from Ruddigkeit et al., 2012; Ramakrishnan et al., 2014.
Original data downloaded from: http://quantum-machine.org/datasets.
Additional annotations (QED, logP, SA score, NP score, bond and ring counts) added using rdkit
library.
Quick start usage:
from datasets import load_dataset
ds = load_dataset("yairschiff/qm9")
# Random train/test splits as recommended by:
# https://moleculenet.org/datasets-1
test_size = 0.1
seed = 1
ds.train_test_split(test_size=test_size, seed=seed)
# Use `ds['canonical_smiles']` from `rdkit` as inputs.
Full processing steps
import os
import typing
import datasets
import numpy as np
import pandas as pd
import rdkit
import torch
from rdkit import Chem as rdChem
from rdkit.Chem import Crippen, QED
from rdkit.Contrib.NP_Score import npscorer
from rdkit.Contrib.SA_Score import sascorer
from tqdm.auto import tqdm
# TODO: Update to 2024.03.6 release when available instead of suppressing warning!
# See: https://github.com/rdkit/rdkit/issues/7625#
rdkit.rdBase.DisableLog('rdApp.warning')
def parse_float(
s: str
) -> float:
"""Parses floats potentially written as exponentiated values.
Copied from https://www.kaggle.com/code/tawe141/extracting-data-from-qm9-xyz-files/code
"""
try:
return float(s)
except ValueError:
base, power = s.split('*^')
return float(base) * 10**float(power)
def count_rings_and_bonds(
mol: rdChem.Mol, max_ring_size: int = -1
) -> typing.Dict[str, int]:
"""Counts bond and ring (by type)."""
# Counting rings
ssr = rdChem.GetSymmSSSR(mol)
ring_count = len(ssr)
ring_sizes = {} if max_ring_size < 0 else {i: 0 for i in range(3, max_ring_size+1)}
for ring in ssr:
ring_size = len(ring)
if ring_size not in ring_sizes:
ring_sizes[ring_size] = 0
ring_sizes[ring_size] += 1
# Counting bond types
bond_counts = {
'single': 0,
'double': 0,
'triple': 0,
'aromatic': 0
}
for bond in mol.GetBonds():
if bond.GetIsAromatic():
bond_counts['aromatic'] += 1
elif bond.GetBondType() == rdChem.BondType.SINGLE:
bond_counts['single'] += 1
elif bond.GetBondType() == rdChem.BondType.DOUBLE:
bond_counts['double'] += 1
elif bond.GetBondType() == rdChem.BondType.TRIPLE:
bond_counts['triple'] += 1
result = {
'ring_count': ring_count,
}
for k, v in ring_sizes.items():
result[f"R{k}"] = v
for k, v in bond_counts.items():
result[f"{k}_bond"] = v
return result
def parse_xyz(
filename: str,
max_ring_size: int = -1,
npscorer_model: typing.Optional[dict] = None,
array_format: str = 'np'
) -> typing.Dict[str, typing.Any]:
"""Parses QM9 specific xyz files.
See https://www.nature.com/articles/sdata201422/tables/2 for reference.
Adapted from https://www.kaggle.com/code/tawe141/extracting-data-from-qm9-xyz-files/code
"""
assert array_format in ['np', 'pt'], \
f"Invalid array_format: `{array_format}` provided. Must be one of `np` (numpy.array), `pt` (torch.tensor)."
num_atoms = 0
scalar_properties = []
atomic_symbols = []
xyz = []
charges = []
harmonic_vibrational_frequencies = []
smiles = ''
inchi = ''
with open(filename, 'r') as f:
for line_num, line in enumerate(f):
if line_num == 0:
num_atoms = int(line)
elif line_num == 1:
scalar_properties = [float(i) for i in line.split()[2:]]
elif 2 <= line_num <= 1 + num_atoms:
atom_symbol, x, y, z, charge = line.split()
atomic_symbols.append(atom_symbol)
xyz.append([parse_float(x), parse_float(y), parse_float(z)])
charges.append(parse_float(charge))
elif line_num == num_atoms + 2:
harmonic_vibrational_frequencies = [float(i) for i in line.split()]
elif line_num == num_atoms + 3:
smiles = line.split()[0]
elif line_num == num_atoms + 4:
inchi = line.split()[0]
array_wrap = np.array if array_format == 'np' else torch.tensor
result = {
'num_atoms': num_atoms,
'atomic_symbols': atomic_symbols,
'pos': array_wrap(xyz),
'charges': array_wrap(charges),
'harmonic_oscillator_frequencies': array_wrap(harmonic_vibrational_frequencies),
'smiles': smiles,
'inchi': inchi
}
scalar_property_labels = [
'A', 'B', 'C', 'mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'u0', 'u', 'h', 'g', 'cv'
]
scalar_properties = dict(zip(scalar_property_labels, scalar_properties))
result.update(scalar_properties)
# RdKit
result['canonical_smiles'] = rdChem.CanonSmiles(result['smiles'])
m = rdChem.MolFromSmiles(result['canonical_smiles'])
result['logP'] = Crippen.MolLogP(m)
result['qed'] = QED.qed(m)
if npscorer_model is not None:
result['np_score'] = npscorer.scoreMol(m, npscorer_model)
result['sa_score'] = sascorer.calculateScore(m)
result.update(count_rings_and_bonds(m, max_ring_size=max_ring_size))
return result
"""
Download xyz files from:
https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
> wget https://figshare.com/ndownloader/files/3195389/dsgdb9nsd.xyz.tar.bz2
> mkdir dsgdb9nsd.xyz
> tar -xvjf dsgdb9nsd.xyz.tar.bz2 -C dsgdb9nsd.xyz
"""
MAX_RING_SIZE = 9
fscore = npscorer.readNPModel()
xyz_dir_path = '<PATH TO dsgdb9nsd.xyz>'
parsed_xyz = []
for file in tqdm(sorted(os.listdir(xyz_dir_path)), desc='Parsing'):
parsed = parse_xyz(os.path.join(xyz_dir_path, file),
max_ring_size=MAX_RING_SIZE,
npscorer_model=fscore,
array_format='np')
parsed_xyz.append(parsed)
qm9_df = pd.DataFrame(data=parsed_xyz)
# Conversion below is needed to avoid:
# `ArrowInvalid: ('Can only convert 1-dimensional array values',
# 'Conversion failed for column pos with type object')`
qm9_df['pos'] = qm9_df['pos'].apply(lambda x: [xi for xi in x])
dataset = datasets.Dataset.from_pandas(qm9_df)