seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
from src.nn_utils.general import exp_mask_for_high_rank, mask_for_high_rank
from src.nn_utils.integration_func import directional_attention_with_dense
from src.nn_utils.nn import bn_dense_layer, linear
def bi_directional_simple_block_attention(
rep_tensor, rep_mask, block_len=5, scope=None,
keep_prob=1., is_train=None, wd=0., activation='elu', hn=None):
with tf.variable_scope(scope or 'bi_directional_simple_block_attn'):
fw_attn_res = simple_block_attention(
rep_tensor, rep_mask, block_len, "forward_attn", "forward",
keep_prob, is_train, wd, activation, hn)
bw_attn_res = simple_block_attention(
rep_tensor, rep_mask, block_len, "backward_attn", "backward",
keep_prob, is_train, wd, activation, hn)
| tensorflow.variable_scope | 14,700 |
import tensorflow as tf
num_or_size_splits=num_of_joints,
axis=-1)
losses = [] # 计算每一个关键点的损失值,并累加求平均
for i in range(num_of_joints):
heatmap_pred = tf.squeeze(heatmap_pred_list[i])
heatmap_true = tf.squeeze(heatmap_true_list[i])
loss = 0.5 * tf.losses.mean_squared_error(y_pred=heatmap_pred * true_weight[:, i],
y_true=heatmap_true * true_weight[:, i])
| tensorflow.squeeze | 14,701 |
import tensorflow as tf
[self.vocab.word_size() - 2, self.vocab.word_embed_dim],
dtype=tf.float32,
initializer=tf.constant_initializer(
self.vocab.word_embeddings[2:],
dtype=tf.float32),
trainable=False)
self.word_pad_unk_mat = tf.get_variable("word_unk_pad",
[2, self.pretrained_word_mat.get_shape()[1]],
dtype=tf.float32,
initializer=tf.constant_initializer(
self.vocab.word_embeddings[:2],
dtype=tf.float32),
trainable=True)
self.word_mat = tf.concat([self.word_pad_unk_mat, self.pretrained_word_mat], axis=0)
self.pretrained_char_mat = tf.get_variable("char_emb_mat",
[self.vocab.char_size() - 2, self.vocab.char_embed_dim],
dtype=tf.float32,
initializer=tf.constant_initializer(
self.vocab.char_embeddings[2:],
dtype=tf.float32),
trainable=False)
self.char_pad_unk_mat = tf.get_variable("char_unk_pad",
[2, self.pretrained_char_mat.get_shape()[1]],
dtype=tf.float32,
initializer=tf.constant_initializer(
self.vocab.char_embeddings[:2],
| tensorflow.concat | 14,702 |
import tensorflow as tf
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
| tensorflow.reshape | 14,703 |
import tensorflow as tf
step_callback: (optional) A function that will be called before each
optimization step, step_callback(iteration, feed_dict)
'''
if self.sess is not None:
self.sess.close()
self.sess = tf.Session(graph=self.graph)
with self.graph.as_default():
self._create_model(train_triples)
self.sess.run(tf.initialize_all_variables())
batch_provider = self._create_batch_provider(train_triples)
| tensorflow.Session | 14,704 |
import tensorflow as tf
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], initializer=init_w, trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], initializer=init_b, trainable=trainable)
| tensorflow.get_variable | 14,705 |
import tensorflow as tf
else:
return tf.reshape(tf.stack(values=h, axis=1), [-1])
def lstm(xs, ms, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
def _ln(x, g, b, e=1e-5, axes=[1]):
u, s = tf.nn.moments(x, axes=axes, keep_dims=True)
| tensorflow.matmul | 14,706 |
import tensorflow as tf
left_in.append(tf.random_normal((1, size * 2)))
right_in.append(tf.random_normal((1, size * 2)))
tracking.append(tf.random_normal((1, tracker_size * 2)))
out = reducer(left_in, right_in, tracking=tracking)
self.assertEqual(batch_size, len(out))
self.assertEqual(tf.float32, out[0].dtype)
self.assertEqual((1, size * 2), out[0].shape)
def testReduceTreeLSTM(self):
with tf.device(self._test_device):
size = 10
tracker_size = 8
reducer = spinn.Reducer(size, tracker_size=tracker_size)
lstm_in = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]],
dtype=np.float32)
c1 = np.array([[0, 1], [2, 3]], dtype=np.float32)
c2 = np.array([[0, -1], [-2, -3]], dtype=np.float32)
| tensorflow.device | 14,707 |
import tensorflow as tf
gan_train_ops = tf.contrib.gan.gan_train_ops(gan_model, gan_loss, gen_optimizer, dis_optimizer)
while_loop = tf.contrib.tpu.while_loop if params['use_tpu'] else tf.while_loop
# train the discriminator 100 steps
inputs = [tf.constant(0), tf.constant(0.0)]
cond = lambda i, x: tf.less(i, 100)
def body(i, x):
return tf.add(i, 1), gan_train_ops.discriminator_train_op
dis_train_op = while_loop(cond, body, inputs)
| tensorflow.constant | 14,708 |
import tensorflow as tf
# Create connected layers: fc1, fc2
with tf.contrib.framework.arg_scope([tf.contrib.layers.fully_connected],
normalizer_fn=tf.contrib.layers.batch_norm,
normalizer_params={"is_training": self.train}):
self.fc1 = tf.contrib.layers.fully_connected(self.flatten, self.config.cifar10_cnn["fc1_nb_units"])
self.fc2 = tf.contrib.layers.fully_connected(self.fc1, self.config.data["num_categories"], activation_fn=None)
# Compute loss
with tf.name_scope("loss"):
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.fc2, labels=self.y))
# Optimizer
with tf.name_scope("training_op"):
self.training_op = tf.compat.v1.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
# Perf metrics
with tf.name_scope("accuracy"):
| tensorflow.name_scope | 14,709 |
import tensorflow as tf
kernel = _variable_with_weight_decay('weights',
shape=kernel_shape,
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
stride_h, stride_w = stride
outputs = tf.nn.conv2d(inputs, kernel,
[1, stride_h, stride_w, 1],
padding=padding)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = tf.layers.batch_normalization(outputs, momentum=0.99, epsilon=1e-6, training=is_training)
if activation_fn is not None:
outputs = tf.nn.leaky_relu(outputs, alpha=0.2)
return outputs
| tensorflow.constant_initializer | 14,710 |
import tensorflow as tf
if alpha > 0:
return tf.maximum(alpha * x, x, name=name)
else:
return tf.nn.relu(x, name=name)
| tensorflow.nn.relu | 14,711 |
import tensorflow as tf
val_losses = np.array(val_losses)
return (training_losses,val_losses, int(parameter_num))
"""
Test RNN graph 0 step
"""
def test_rnn(test_data_x,test_data_y, g, checkpoint, input_prob, output_prob, state_prob, num_test):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
test_data_yp = np.insert(test_data_y,0,0,axis=0)[:-1]
"read the trained graph"
g['saver'].restore(sess, checkpoint)
"run the test points"
#run the whole sequence, one class one total run
for index,(X, Y, YP) in enumerate(gen_batch(test_data_x, test_data_y,test_data_yp, 1, num_test, None)):
| tensorflow.Session | 14,712 |
import tensorflow as tf
self.is_training = tf.placeholder(tf.bool)
initializer = tf.contrib.layers.variance_scaling_initializer()
# Embedding Lookup 16
with tf.device('/cpu:0'), tf.name_scope("embedding"):
if use_he_uniform:
self.embedding_W = tf.get_variable(name='lookup_W', shape=[num_quantized_chars, embedding_size],
initializer=tf.contrib.layers.variance_scaling_initializer())
else:
self.embedding_W = tf.Variable(tf.random_uniform([num_quantized_chars, embedding_size], -1.0, 1.0),name="embedding_W")
self.embedded_characters = tf.nn.embedding_lookup(self.embedding_W, self.input_x)
embedded_text_expand = tf.expand_dims(self.embedded_characters, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_tags"):
W_tags = tf.get_variable("embed_W_tags", [tags_vocab_size, embedding_size], initializer=initializer)
embedded_tags = tf.nn.embedding_lookup(W_tags, self.input_tags)
embedded_tags_expanded = tf.expand_dims(embedded_tags, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_deps"):
W_deps = tf.get_variable("embed_W_deps", [deps_vocab_size, embedding_size], initializer=initializer)
embedded_deps = tf.nn.embedding_lookup(W_deps, self.input_deps)
embedded_deps_expanded = tf.expand_dims(embedded_deps, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_head"):
W_head = tf.get_variable("embed_W_head", [num_quantized_chars, embedding_size], initializer=initializer)
embedded_head = tf.nn.embedding_lookup(W_head, self.input_head)
embedded_head_expanded = tf.expand_dims(embedded_head, -1)
cnn_inputs = tf.concat(
| tensorflow.get_variable | 14,713 |
import tensorflow as tf
numpy.random.seed(42)
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph())
| tensorflow.set_random_seed | 14,714 |
import tensorflow as tf
pred, K, reprojected, crit_fake = model(x2d)
crit_real = model.crit(x3d)
crit_dis = tf.reduce_mean(tf.square(crit_real - tf.ones_like(crit_real))) + tf.reduce_mean(tf.square(crit_fake - tf.zeros_like(crit_fake)))
crit_gen = tf.reduce_mean(tf.square(crit_fake - tf.ones_like(crit_fake)))
| tensorflow.zeros_like | 14,715 |
import tensorflow as tf
f2 = tf.reduce_sum(half(masked, 1), 2) / tf.reduce_sum(half(mask, 1))
return tf.concat([x, f1, f2], 1)
def batch_norm(x, train, name, decay=0.99, epsilon=1e-5):
shape = x.get_shape().as_list()
with tf.variable_scope(name):
beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.))
gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02))
pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False)
pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False)
if pop_mean not in tf.moving_average_variables():
| tensorflow.constant_initializer | 14,716 |
import tensorflow as tf
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class XnliProcessor(DataProcessor):
| tensorflow.gfile.Open | 14,717 |
import tensorflow as tf
log_r = tf.cond(
tf.less(t + 1, self.max_seq_len),
lambda: self.tilt(rnn_out, latent_encoded, self.targets_ta.read(t+1)),
lambda: 0.)
# On the last step, log_r = 0.
log_r *= tf.to_float(t < self.seq_lengths - 1)
weights += log_r - prev_log_r
new_state = TrainableVRNNState(rnn_state=next_rnn_state,
rnn_out=rnn_out,
latent_encoded=latent_encoded)
| tensorflow.to_float | 14,718 |
import tensorflow as tf
Returns:
A boolean tensor of shape [M, N], True for entries which are sampled.
"""
def _minibatch_subsample_fn(inputs):
indicators, targets = inputs
return sample_balanced_positive_negative(tf.cast(indicators, tf.bool),
sample_size,
tf.cast(targets, tf.bool),
positive_fraction=positive_fraction)
return tf.cast(tf.map_fn(_minibatch_subsample_fn, [indicators, labels],
dtype=tf.bool,
parallel_iterations=16,
back_prop=True),
dtype=dtype)
| tensorflow.cast | 14,719 |
import tensorflow as tf
mask = tf.equal(mask, tf.ones_like(mask))
hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
input_size = query.get_shape().as_list()[-1]
# Trainable parameters
w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
# key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape
| tensorflow.tensordot | 14,720 |
import tensorflow as tf
# model related configuration
tf.app.flags.DEFINE_integer(
'train_image_size', 352,
'The size of the input image for the model to use.')
tf.app.flags.DEFINE_integer(
'resnet_size', 50,
'The size of the ResNet model to use.')
tf.app.flags.DEFINE_integer(
| tensorflow.app.flags.DEFINE_integer | 14,721 |
import tensorflow as tf
"""Define a single cell with variational dropout"""
def get_a_cell(state_size,input_prob,state_prob,num_input):
if cell_type == 'LSTM':
if activation == 'linear':
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, activation = tf.identity, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, activation = tf.nn.relu, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
else: #tanh by default
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif cell_type == 'GRU':
if activation == 'linear':
gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.identity)
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
| tensorflow.nn.rnn_cell.LSTMCell | 14,722 |
import tensorflow as tf
g = tf.gradients(U, x, grad_ys=self.dummy_x1_tf)[0]
return tf.gradients(g, self.dummy_x1_tf)[0]
| tensorflow.gradients | 14,723 |
import tensorflow as tf
* Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. In Proceedings of SIGIR '18
"""
def __init__(self, data_set, exp_settings, forward_only=False):
"""Create the model.
Args:
data_set: (Raw_data) The dataset used to build the input layer.
exp_settings: (dictionary) The dictionary containing the model settings.
forward_only: Set true to conduct prediction only, false to conduct training.
"""
print('Build DLA atten')
self.hparams = tf.contrib.training.HParams(
learning_rate=0.05, # Learning rate.
max_gradient_norm=5.0, # Clip gradients to this norm.
loss_func='click_weighted_softmax_cross_entropy', # Select Loss function
logits_to_prob='softmax', # the function used to convert logits to probability distributions
ranker_learning_rate=-1.0, # The learning rate for ranker (-1 means same with learning_rate).
ranker_loss_weight=1.0, # Set the weight of unbiased ranking loss
l2_loss=0.0, # Set strength for L2 regularization.
l1_loss=0.0,
max_propensity_weight = -1, # Set maximum value for propensity weights
constant_propensity_initialization = False, # Set true to initialize propensity with constants.
grad_strategy='ada', # Select gradient strategy
)
print(exp_settings['learning_algorithm_hparams'])
| tensorflow.contrib.training.HParams | 14,724 |
import tensorflow as tf
callback.on_rollout_start()
if step % self.update_buffer_interval ==0 and step>self.learning_starts:
mean_agent = sum(all_r)/sum(all_r_step)
mean_exp = sum(all_exp_r)/sum(all_exp_r_step)
add_r = mean_agent>mean_exp-0.5
all_r = []
all_exp_r = []
all_r_step = []
all_exp_r_step = []
if add_r:
self.ratio = min(self.ratio+2/self.batch_size,self.max_ratio)
else:
self.ratio = max(self.ratio-1/self.batch_size,self.init_ratio)
print('|new-ratio:',self.ratio,'|mean-agent:',mean_agent,'|mean-exp:',mean_exp-0.5,'|')
smry = tf.Summary(value=[tf.Summary.Value(tag="ratio", simple_value=self.ratio)])
writer.add_summary(smry,step)
episode_rewards[-1] += reward_
if done:
if self.action_noise is not None:
self.action_noise.reset()
if not isinstance(self.env, VecEnv):
obs = self.env.reset()
#if episode_rewards[-1] >= mean_expert_reward:
# self.ratio = np.clip((self.ratio+1/self.batch_size),0,60/self.batch_s
episode_rewards.append(0.0)
maybe_is_success = info.get('is_success')
| tensorflow.Summary.Value | 14,725 |
import tensorflow as tf
rnn_params,
base_variable_scope="Model/RNN")
tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable)
self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0]
| tensorflow.add_to_collection | 14,726 |
import tensorflow as tf
return tf.reduce_mean(loss)
loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32,
parallel_iterations=32)
final_loss = tf.reduce_mean(loss)
return final_loss
def contra_traj_lossV1(pred, tgt, temp=10.0):
# Trajectory-wise contrastive loss
traj_pred = tf.reduce_mean(pred, axis=1)
traj_tgt = tf.reduce_mean(tgt, axis=1)
p1, p2 = tf.split(traj_pred, 2, axis=0)
t1, t2 = tf.split(traj_tgt, 2, axis=0)
soft_sign = tf.tanh((t1 - t2) * temp)
loss = tf.maximum(0.0, soft_sign * ((t1 - t2) - (p1 - p2)))
loss = tf.reduce_mean(loss)
return loss
def horizon_sumV1(input, horizon=12):
bs, epi_len = input.shape[:2]
new_w = epi_len - horizon + 1
| tensorflow.reduce_mean | 14,727 |
import tensorflow as tf
pred_mat = tf.get_variable('pred_mat', [in_size, self._out_vocab_size])
pred_bias = tf.get_variable('pred_bias', [self._out_vocab_size])
# Make a prediction for each tweet.
def GetWordPred(o_):
logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias)
return tf.nn.softmax(logits)
preds = GetWordPred(wvsum)
z = tf.tile(tf.reshape(tf.reduce_sum(preds,1),[-1,1]), [1, out_vocab_size])
self.preds, self.z = preds, z
self.probs = tf.div(preds, z) #normalize
| tensorflow.nn.softmax | 14,728 |
import tensorflow as tf
def train_rnn_multi(raw_data_x, raw_data_y, val_data_x, val_data_y, timeindex_train, timeindex_val, g, num_epochs, num_steps, batch_size, input_prob, output_prob, state_prob, epoch_before_val = 50, max_checks_without_progress=50,epoch_overlap=None, verbose=True, save=False):
with tf.Session() as sess:
"initialize the variables"
| tensorflow.Session | 14,729 |
import tensorflow as tf
examples_per_sec = num_epochs * num_batches * batch_size / wall_time
self.report_benchmark(
name="eager_train_%s" %
("gpu" if tfe.num_gpus() > 0 else "cpu"),
iters=num_epochs * num_batches,
extras={"examples_per_sec": examples_per_sec},
wall_time=wall_time)
if __name__ == "__main__":
tf.enable_eager_execution()
tf.test.main()
| tensorflow.test.main | 14,730 |
import tensorflow as tf
Args:
var_name: name of variable as a string.
"""
if var_name not in self._initializers:
if var_name == self.GAMMA:
self._initializers[self.GAMMA] = tf.ones_initializer()
elif var_name == self.BETA:
self._initializers[self.BETA] = tf.zeros_initializer()
def _build_statistics_variance(self, input_batch,
reduction_indices, use_batch_stats):
"""Builds the statistics part of the graph when using moving variance.
Args:
input_batch: Input batch Tensor.
| tensorflow.zeros_initializer | 14,731 |
import tensorflow as tf
n_neg_to_select = tf.cast(params['negative_ratio'] * n_positives, tf.int32)
n_neg_to_select = tf.minimum(n_neg_to_select, tf.cast(n_negtives, tf.int32))
| tensorflow.cast | 14,732 |
import tensorflow as tf
"""
max_time = 8
batch_size = 16
inputs = tf.random_uniform([batch_size, max_time],
maxval=30521, dtype=tf.int32)
| tensorflow.random_uniform | 14,733 |
from tensorflow.python.ops import random_ops
else:
gradient_shape = gradient.get_shape()
noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale
noisy_gradients.append(gradient + noise)
| tensorflow.python.ops.random_ops.truncated_normal | 14,734 |
from tensorflow.core.framework import op_def_pb2 as _op_def_pb2
path_values: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32`.
"""
result = _op_def_lib.apply_op("UnpackPath", path=path,
path_values=path_values, name=name)
return result
def _InitOpDefLibrary():
op_list = _op_def_pb2.OpList()
_text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list)
_op_def_registry.register_op_list(op_list)
op_def_lib = _op_def_library.OpDefLibrary()
op_def_lib.add_op_list(op_list)
return op_def_lib
_InitOpDefLibrary.op_list_ascii = """op {
name: "HardRoutingFunction"
input_arg {
name: "input_data"
| tensorflow.core.framework.op_def_pb2.OpList | 14,735 |
import tensorflow as tf
by mistake.
"""
def fun_(*args, **kwargs):
try:
return fun(*args, **kwargs)
except ValueError as e:
if 'reuse' in str(e):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
return fun(*args, **kwargs)
else:
raise e
return fun_
| tensorflow.get_variable_scope | 14,736 |
import tensorflow as tf
min_score_thresh=0.65,
min_iou_thresh=0.5,
is_class_agnostic=False)
nms_masks_expected2 = tf.stack([mask2, mask0, mask5, mask4])
nms_scores_expected2 = tf.constant([0.95, 1.0, 0.8, 0.7], dtype=tf.float32)
nms_classes_expected2 = tf.constant([0, 1, 2, 2], dtype=tf.int32)
self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy())
self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy())
self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy())
self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy())
self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy())
self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy())
def test_points_mask_iou(self):
masks1 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0]], dtype=tf.int32)
masks2 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 1]], dtype=tf.int32)
iou = isu.points_mask_iou(masks1=masks1, masks2=masks2)
expected_iou = tf.constant([[0, 0, 0],
[0, 1, 0.6],
[0, 0.6, 1.0],
[0, 0.4, 0]], dtype=tf.float32)
self.assertAllClose(iou.numpy(), expected_iou.numpy())
| tensorflow.constant | 14,737 |
import tensorflow as tf
else:
return -tf.reduce_sum(log_sum_exp(log_probs), [1, 2])
def mse_loss(pred, labels):
try:
batch_size = tf.cast(pred.shape[0], tf.float32)
except Exception as e:
print('Pred is a tf tensor %s' % str(e.message))
batch_size = tf.cast(tf.shape(pred)[0], tf.float32)
loss_val = tf.sqrt(2 * tf.nn.l2_loss(pred - labels)) / batch_size
return loss_val
def pullaway_loss(embeddings, name='pullaway_loss'):
"""Pull Away loss calculation.
Args:
embeddings: The embeddings to be orthogonalized for varied faces.
Shape [batch_size, embeddings_dim]
| tensorflow.nn.l2_loss | 14,738 |
import tensorflow as tf
x,
y_size[:-1],
kernel,
align_corners=False)
resized = tf.nn.conv3d_transpose(
value=resized,
filter=kernel,
output_shape=y_size,
strides=[1, 1, 1, 1, 1],
padding='SAME',
name='resize_x_to_y')
resized = tf.nn.bias_add(
resized,
bias)
resized = self.ff_nl(resized)
return resized
else:
raise NotImplementedError(mode)
def conv_3d_op(
self,
data,
| tensorflow.nn.bias_add | 14,739 |
import tensorflow as tf
td_map[self.train_model.states_ph] = states
td_map[self.train_model.dones_ph] = masks
td_map[self.polyak_model.states_ph] = states
td_map[self.polyak_model.dones_ph] = masks
if writer is not None:
# run loss backprop with summary, but once every 10 runs save the metadata (memory, compute time, ...)
if self.full_tensorboard_log and (1 + (steps / self.n_batch)) % 10 == 0:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
step_return = self.sess.run([self.summary] + self.run_ops, td_map, options=run_options,
run_metadata=run_metadata)
writer.add_run_metadata(run_metadata, 'step%d' % steps)
else:
step_return = self.sess.run([self.summary] + self.run_ops, td_map)
writer.add_summary(step_return[0], steps)
| tensorflow.RunOptions | 14,740 |
import tensorflow as tf
"target_action": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_reward": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_policy": tf.zeros(
obs_shape[:1] + [num_target_frames] + [action_space.n]),
"target_value": tf.zeros(
obs_shape[:1] + target_value_shape_suffix)
}
model.distributional_value_size = max(distributional_size, 1)
model.use_epochs = hparams.use_epochs
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
| tensorflow.zeros | 14,741 |
import tensorflow as tf
arc_seq = arc_seq.write(start_id + 2 * i, index)
curr_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(
| tensorflow.nn.sparse_softmax_cross_entropy_with_logits | 14,742 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
# Block 1
conv1a = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[8, 8], strides=4, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(self.inputs)
conv1b = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1a)
conv1c = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1b)
| tensorflow.keras.layers.Conv2D | 14,743 |
import tensorflow as tf
def dense(x, num_units, scope="dense", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)):
with tf.variable_scope(scope):
| tensorflow.constant_initializer | 14,744 |
import tensorflow as tf
if isinstance(metric, ShapeAccuracyMetric):
labels = sample['shapes']
weights = tf.math.sign(labels + 1) # -1 is mapped to zero, else 1
metric.update(labels, detections['shapes_logits'], weights)
elif isinstance(metric, BoxIoUMetric):
scene_id = str(sample['scene_filename'].numpy(), 'utf-8')
# Get ground truth boxes
labeled_boxes = labeled_boxes_init
if metric.threed:
rotations_y = tf.concat([tf_utils.euler_from_rotation_matrix(
tf.reshape(detections['rotations_3d'][i], [3, 3]),
1) for i in range(num_boxes)], axis=0)
rotations_y = tf.reshape(rotations_y, [-1, 1])
labeled_boxes = tf.concat([sample['translations_3d'],
sample['sizes_3d'],
rotations_y], axis=1)
# Get predicted boxes
predicted_boxes = detections['detection_boxes']
if metric.threed:
rotations_y = tf.concat([tf_utils.euler_from_rotation_matrix(
tf.reshape(detections['rotations_3d'][i], [3, 3]),
1) for i in range(num_boxes)], axis=0)
rotations_y = tf.reshape(rotations_y, [-1, 1])
predicted_boxes = tf.concat([detections['translations_3d'],
| tensorflow.reshape | 14,745 |
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
from Bunch import Bunch
tf.app.flags.DEFINE_string('input_path', '../data/tmp/grid03.14.c.tar.gz', 'input folder')
tf.app.flags.DEFINE_string('input_name', '', 'input folder')
tf.app.flags.DEFINE_string('test_path', '', 'test set folder')
tf.app.flags.DEFINE_string('net', 'f100-f3', 'model configuration')
tf.app.flags.DEFINE_string('model', 'noise', 'Type of the model to use: Autoencoder (ae)'
'WhatWhereAe (ww) U-netAe (u)')
tf.app.flags.DEFINE_string('postfix', '', 'Postfix for the training folder')
tf.app.flags.DEFINE_float('alpha', 10, 'Predictive reconstruction loss weight')
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
| tensorflow.app.flags.DEFINE_string | 14,746 |
import tensorflow as tf
# Gain bias
bias_shape = [1, 1, 1, 1, self.hgru_k[idx]]
if self.gate_bias_init == 'chronos':
bias_init = -tf.log(
tf.random_uniform(
bias_shape,
minval=1,
maxval=self.timesteps - 1,
dtype=self.dtype))
else:
bias_init = tf.ones(bias_shape, dtype=self.dtype)
setattr(
self,
'gain_bias_%s' % layer,
tf.get_variable(
name='%s_gain_bias' % self.layer_name,
dtype=self.dtype,
trainable=True,
initializer=bias_init))
if self.gate_bias_init == 'chronos':
bias_init = -bias_init
else:
bias_init = tf.ones(bias_shape, dtype=self.dtype)
setattr(
self,
'mix_bias_%s' % layer,
tf.get_variable(
name='%s_mix_bias' % self.layer_name,
| tensorflow.get_variable | 14,747 |
import tensorflow as tf
print('\rTrained in %.3fs. Global step %i' % (time() - start, step+1))
return summary
class PPO_HC(PPO):
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
# sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
| tensorflow.layers.dense | 14,748 |
import tensorflow as tf
REPLACE_ITER_C = 1500
MEMORY_CAPACITY = 200000
BATCH_SIZE = 32
DISPLAY_THRESHOLD = 100 # display until the running reward > 100
DATA_PATH = './data'
LOAD_MODEL = False
SAVE_MODEL_ITER = 100000
RENDER = False
OUTPUT_GRAPH = False
ENV_NAME = 'BipedalWalker-v2'
GLOBAL_STEP = tf.Variable(0, trainable=False)
INCREASE_GS = GLOBAL_STEP.assign(tf.add(GLOBAL_STEP, 1))
LR_A = tf.train.exponential_decay(LR_A, GLOBAL_STEP, 10000, .97, staircase=True)
LR_C = tf.train.exponential_decay(LR_C, GLOBAL_STEP, 10000, .97, staircase=True)
END_POINT = (200 - 10) * (14/30) # from game
env = gym.make(ENV_NAME)
env.seed(1)
STATE_DIM = env.observation_space.shape[0] # 24
ACTION_DIM = env.action_space.shape[0] # 4
ACTION_BOUND = env.action_space.high # [1, 1, 1, 1]
# all placeholder for tf
with tf.name_scope('S'):
S = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s')
with tf.name_scope('R'):
| tensorflow.train.exponential_decay | 14,749 |
import tensorflow as tf
def build_value(self, _input):
with tf.variable_scope('VF'):
hidden = tf.layers.dense(inputs=_input,
units=self.vf_hidden_size,
activation=tf.nn.elu)
w = tf.get_variable("weights", (self.vf_hidden_size, 1))
return tf.matmul(hidden, w)
def build_loss(self):
cutoff_vf_manager = tf.reshape(tf.stop_gradient(self.manager_vf), [-1])
dot = tf.reduce_sum(tf.multiply(self.s_diff, self.g), axis=1)
gcut = tf.stop_gradient(self.g)
mag = tf.norm(self.s_diff, axis=1) * tf.norm(gcut, axis=1) + .0001
dcos = dot / mag
manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos)
cutoff_vf_worker = tf.reshape(tf.stop_gradient(self.worker_vf), [-1])
log_p = tf.reduce_sum(self.log_pi * self.ac, [1])
worker_loss = (self.r + self.alpha * self.ri - cutoff_vf_worker) * log_p
| tensorflow.stop_gradient | 14,750 |
import tensorflow as tf
def avg_norm(t):
return tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(t), axis=-1)))
def gradient_add(g1, g2, param):
print([g1, g2, param.name])
assert (not (g1 is None and g2 is None)), param.name
if g1 is None:
return g2
elif g2 is None:
return g1
else:
return g1 + g2
def q_explained_variance(qpred, q):
_, vary = tf.nn.moments(q, axes=[0, 1])
_, varpred = tf.nn.moments(q - qpred, axes=[0, 1])
check_shape([vary, varpred], [[]] * 2)
return 1.0 - (varpred / vary)
| tensorflow.nn.moments | 14,751 |
import tensorflow as tf
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
def export_ops(self, name):
"""Exports ops to collections."""
self._name = name
ops = {util.with_prefix(self._name, "cost"): self._cost}
if self._is_training:
ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
if self._rnn_params:
ops.update(rnn_params=self._rnn_params)
for name, op in ops.items():
tf.add_to_collection(name, op)
self._initial_state_name = util.with_prefix(self._name, "initial")
self._final_state_name = util.with_prefix(self._name, "final")
util.export_state_tuples(self._initial_state, self._initial_state_name)
util.export_state_tuples(self._final_state, self._final_state_name)
def import_ops(self):
"""Imports ops from collections."""
if self._is_training:
self._train_op = tf.get_collection_ref("train_op")[0]
self._lr = tf.get_collection_ref("lr")[0]
self._new_lr = tf.get_collection_ref("new_lr")[0]
self._lr_update = tf.get_collection_ref("lr_update")[0]
| tensorflow.add_to_collection | 14,752 |
import tensorflow as tf
@registry.register_model
class FeedForwardCategoricalPolicy(PolicyBase):
"""Feed-forward categorical."""
def body(self, features):
observations = features["inputs_raw"]
observations = tf.cast(observations, tf.float32)
flat_observations = tf.layers.flatten(observations)
with tf.variable_scope("policy"):
x = flat_observations
for size in self.hparams.policy_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
logits = tf.layers.dense(x, self.hparams.problem.num_actions)
logits = tf.expand_dims(logits, axis=1)
with tf.variable_scope("value"):
| tensorflow.layers.flatten | 14,753 |
import tensorflow as tf
layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg)
vf = tf.layers.dense(layer_c2, 1, kernel_regularizer=reg)
| tensorflow.layers.dense | 14,754 |
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_sparse_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops
class BatchedSpMM:
def __init__(self):
self.b_module = tf.load_op_library('./batched.so')
def call(self, sp_matrices, dense_matrices, adjoint_a=False, adjoint_b=False):
sp_indices = [sp_m.indices for sp_m in sp_matrices]
sp_values = [sp_m.values for sp_m in sp_matrices]
sp_shape = [sp_m.dense_shape for sp_m in sp_matrices]
return self.b_module.bspmm(sp_ids = sp_indices, sp_values = sp_values, sp_shape = sp_shape, rhs = dense_matrices, adjoint_a = adjoint_a, adjoint_b = adjoint_b)
class BatchedSpMDT:
def __init__(self):
| tensorflow.load_op_library | 14,755 |
import tensorflow as tf
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = cross_entropy + loc_loss + params['weight_decay'] * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[int(_) for _ in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype))
# Create a tensor named learning_rate for logging purposes.
tf.identity(truncated_learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
| tensorflow.constant | 14,756 |
import tensorflow as tf
elif decoder.update_first:
output, state = update(state, input_, None, input_symbol)
context, new_weights = look(time, output, input_, pos=pos, prev_weights=prev_weights, context=context)
if decoder.conditional_rnn:
with tf.variable_scope('conditional_2'):
output, state = update(state, context)
elif not decoder.generate_first:
output, state = update(state, input_, context, input_symbol)
output_ = generate(output, input_, context)
argmax = lambda: tf.argmax(output_, 1)
target = lambda: inputs.read(time + 1)
softmax = lambda: tf.squeeze(tf.multinomial(tf.log(tf.nn.softmax(output_)), num_samples=1),
axis=1)
use_target = tf.logical_and(time < time_steps - 1, tf.random_uniform([]) >= feed_previous)
predicted_symbol = tf.case([
(use_target, target),
(tf.logical_not(feed_argmax), softmax)],
default=argmax) # default case is useful for beam-search
predicted_symbol.set_shape([None])
predicted_symbol = tf.stop_gradient(predicted_symbol)
| tensorflow.argmax | 14,757 |
import tensorflow as tf
def evaluate_legendre_polynomial(degree_l: TensorLike,
order_m: TensorLike,
x: TensorLike) -> TensorLike:
degree_l = tf.convert_to_tensor(value=degree_l)
order_m = tf.convert_to_tensor(value=order_m)
x = tf.convert_to_tensor(value=x)
pmm = _evaluate_legendre_polynomial_pmm_eval(order_m, x)
return tf.where(
tf.equal(degree_l, order_m), pmm,
_evaluate_legendre_polynomial_branch(degree_l, order_m, x, pmm))
def _spherical_harmonics_normalization(l, m, var_type=tf.float64):
l = tf.cast(l, dtype=var_type)
m = tf.cast(m, dtype=var_type)
numerator = (2.0 * l + 1.0) * factorial(l - tf.abs(m))
denominator = 4.0 * np.pi * factorial(l + tf.abs(m))
return tf.sqrt(numerator / denominator)
| tensorflow.equal | 14,758 |
import tensorflow as tf
Arguments:
Y_labels -- ground truth vector
N_classes -- the number of classes in the ground truth vector
N_ch -- number of channels, if any (for the feature vector only)
Returns:
one_hot -- one hot matrix encoding
"""
# Create a tensot flow constant equal to the number of classes
C = tf.constant(N_classes, name="C")
one_hot_matrix = tf.one_hot(vect-1, C, axis=0) #axis=0 means it is mapping to column vectors
if N_ch != 0:
one_hot_matrix= tf.expand_dims(one_hot_matrix, 1)
# Create tensodr flow session
sess = tf.Session()
vect_hot = sess.run(one_hot_matrix)
sess.close()
return vect_hot
#Place Holders for the input/output data
| tensorflow.expand_dims | 14,759 |
import tensorflow as tf
with tf.variable_scope('target_q'):
self.target_q = R + self.gamma * self.q_
with tf.variable_scope('abs_TD'):
self.abs_td = tf.abs(self.target_q - self.q)
self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights')
with tf.variable_scope('TD_error'):
self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q))
with tf.variable_scope('C_train'):
self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=GLOBAL_STEP)
| tensorflow.placeholder | 14,760 |
import tensorflow as tf
def correlation_loss(source_samples, target_samples, weight, name='corr_loss'):
"""Adds a similarity loss term, the correlation between two representations.
Args:
source_samples: a tensor of shape [num_samples, num_features]
target_samples: a tensor of shape [num_samples, num_features]
weight: a scalar weight for the loss.
scope: optional name scope for summary tags.
Returns:
a scalar tensor representing the correlation loss value.
"""
with tf.name_scope(name):
source_samples -= tf.reduce_mean(source_samples, 0)
target_samples -= tf.reduce_mean(target_samples, 0)
source_samples = tf.nn.l2_normalize(source_samples, 1)
target_samples = tf.nn.l2_normalize(target_samples, 1)
source_cov = tf.matmul(tf.transpose(source_samples), source_samples)
target_cov = tf.matmul(tf.transpose(target_samples), target_samples)
corr_loss = tf.reduce_mean(tf.square(source_cov - target_cov)) * weight
assert_op = tf.Assert(tf.is_finite(corr_loss), [corr_loss])
with tf.control_dependencies([assert_op]):
tag = 'Correlation Loss'
barrier = tf.no_op(tag)
| tensorflow.reduce_mean | 14,761 |
import tensorflow as tf
q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func")
perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1)
mean_kl = tf.reduce_mean(kl)
| tensorflow.nn.softmax | 14,762 |
from tensorflow.python.platform import gfile
self.assertEqual([], save.last_checkpoints)
s1 = save.save(sess, os.path.join(save_dir, "s1"))
self.assertEqual([s1], save.last_checkpoints)
self.assertTrue(gfile.Exists(s1))
s2 = save.save(sess, os.path.join(save_dir, "s2"))
self.assertEqual([s1, s2], save.last_checkpoints)
| tensorflow.python.platform.gfile.Exists | 14,763 |
import tensorflow as tf
trainable=True
)
self.ch_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1])
self.qh_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.qh, tf.bool), tf.int32), axis=2), [-1])
| tensorflow.cast | 14,764 |
import tensorflow as tf
W_p = self._make_var('W_p', (1, 1, ch_mul * ch, ch))
X = tf.nn.relu(X)
| tensorflow.nn.relu | 14,765 |