license: cc-by-sa-4.0
language:
- ceb
- da
- de
- en
- hr
- pt
- ru
- sk
- sr
- sv
- tl
- zh
task_categories:
- token-classification
dataset_info:
- config_name: ceb_gja
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 39540
num_examples: 188
download_size: 30395
dataset_size: 39540
- config_name: da_ddt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2304027
num_examples: 4383
- name: validation
num_bytes: 293562
num_examples: 564
- name: test
num_bytes: 285813
num_examples: 565
download_size: 2412623
dataset_size: 2883402
- config_name: de_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 641819
num_examples: 1000
download_size: 501924
dataset_size: 641819
- config_name: en_ewt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 6133506
num_examples: 12543
- name: validation
num_bytes: 782835
num_examples: 2001
- name: test
num_bytes: 785361
num_examples: 2077
download_size: 5962747
dataset_size: 7701702
- config_name: en_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 600666
num_examples: 1000
download_size: 462120
dataset_size: 600666
- config_name: hr_set
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 4523323
num_examples: 6914
- name: validation
num_bytes: 656738
num_examples: 960
- name: test
num_bytes: 719703
num_examples: 1136
download_size: 4620262
dataset_size: 5899764
- config_name: pt_bosque
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 4839200
num_examples: 7018
- name: validation
num_bytes: 802880
num_examples: 1172
- name: test
num_bytes: 780768
num_examples: 1167
download_size: 4867264
dataset_size: 6422848
- config_name: pt_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 661453
num_examples: 1000
download_size: 507495
dataset_size: 661453
- config_name: ru_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 795294
num_examples: 1000
download_size: 669214
dataset_size: 795294
- config_name: sk_snk
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2523121
num_examples: 8483
- name: validation
num_bytes: 409448
num_examples: 1060
- name: test
num_bytes: 411686
num_examples: 1061
download_size: 2597877
dataset_size: 3344255
- config_name: sr_set
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2174631
num_examples: 3328
- name: validation
num_bytes: 349276
num_examples: 536
- name: test
num_bytes: 336065
num_examples: 520
download_size: 2248325
dataset_size: 2859972
- config_name: sv_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 588564
num_examples: 1000
download_size: 464252
dataset_size: 588564
- config_name: sv_talbanken
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2027488
num_examples: 4303
- name: validation
num_bytes: 291774
num_examples: 504
- name: test
num_bytes: 615209
num_examples: 1219
download_size: 2239432
dataset_size: 2934471
- config_name: tl_trg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 23671
num_examples: 128
download_size: 18546
dataset_size: 23671
- config_name: tl_ugnayan
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 31732
num_examples: 94
download_size: 23941
dataset_size: 31732
- config_name: zh_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2747999
num_examples: 3997
- name: validation
num_bytes: 355515
num_examples: 500
- name: test
num_bytes: 335893
num_examples: 500
download_size: 2614866
dataset_size: 3439407
- config_name: zh_gsdsimp
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2747863
num_examples: 3997
- name: validation
num_bytes: 352423
num_examples: 500
- name: test
num_bytes: 335869
num_examples: 500
download_size: 2611290
dataset_size: 3436155
- config_name: zh_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 607418
num_examples: 1000
download_size: 460357
dataset_size: 607418
Dataset Card for Universal NER
Dataset Summary
Universal NER (UNER) is an open, community-driven initiative aimed at creating gold-standard benchmarks for Named Entity Recognition (NER) across multiple languages. The primary objective of UNER is to offer high-quality, cross-lingually consistent annotations, thereby standardizing and advancing multilingual NER research. UNER v1 includes 19 datasets with named entity annotations, uniformly structured across 13 diverse languages.
Supported Tasks and Leaderboards
token-classification
: The dataset can be used to train token classification models of the NER variety. Some pre-trained models released as part of the UNER v1 release can be found at https://huggingface.co/universalner
Languages
The dataset contains data in the following languages:
- Cebuano (
ceb
) - Danish (
da
) - German (
de
) - English (
en
) - Croatian (
hr
) - Portuguese (
pt
) - Russian (
ru
) - Slovak (
sk
) - Serbian (
sr
) - Swedish (
sv
) - Tagalog (
tl
) - Chinese (
zh
)
Dataset Structure
Data Instances
An example from the UNER_English-PUD
test set looks as follows
{
"idx": "n01016-0002",
"text": "Several analysts have suggested Huawei is best placed to benefit from Samsung's setback.",
"tokens": [
"Several", "analysts", "have", "suggested", "Huawei",
"is", "best", "placed", "to", "benefit",
"from", "Samsung", "'s", "setback", "."
],
"ner_tags": [
"O", "O", "O", "O", "B-ORG",
"O", "O", "O", "O", "O",
"O", "B-ORG", "O", "O", "O"
],
"annotator": "blvns"
}
Data Fields
idx
: the ID uniquely identifying the sentence (instance), if available.text
: the full text of the sentence (instance)tokens
: the text of the sentence (instance) split into tokens. Note that this split is inhereted from Universal Dependenciesner_tags
: the NER tags associated with each one of thetokens
annotator
: the annotator who provided thener_tags
for this particular instance
Data Splits
TBD
Dataset Creation
Curation Rationale
TBD
Source Data
Initial Data Collection and Normalization
We selected the Universal Dependency (UD) corpora as the default base texts for annotation due to their extensive language coverage, pre-existing data collection, cleaning, tokenization, and permissive licensing. This choice accelerates our process by providing a robust foundation. By adding another annotation layer to the already detailed UD annotations, we facilitate verification within our project and enable comprehensive multilingual research across the entire NLP pipeline. Given that UD annotations operate at the word level, we adopted the BIO annotation schema (specifically IOB2). In this schema, words forming the beginning (B) or inside (I) part of an entity (X ∈ {PER, LOC, ORG}) are annotated accordingly, while all other words receive an O tag. To maintain consistency, we preserve UD's original tokenization.
Although UD serves as the default data source for UNER, the project is not restricted to UD corpora, particularly for languages not currently represented in UD. The primary requirement for inclusion in the UNER corpus is adherence to the UNER tagging guidelines. Additionally, we are open to converting existing NER efforts on UD treebanks to align with UNER. In this initial release, we have included four datasets transferred from other manual annotation efforts on UD sources (for DA, HR, ARABIZI, and SR).
Who are the source language producers?
This information can be found on per-dataset basis for each of the source Universal Dependencies datasets.
Annotations
Annotation process
The data has been annotated by
Who are the annotators?
For the initial UNER annotation effort, we recruited volunteers from the multilingual NLP community via academic networks and social media. The annotators were coordinated through a Slack workspace, with all contributors working on a voluntary basis. We assume that annotators are either native speakers of the language they annotate or possess a high level of proficiency, although no formal language tests were conducted. The selection of the 13 dataset languages in the first UNER release was driven by the availability of annotators. As the project evolves, we anticipate the inclusion of additional languages and datasets as more annotators become available.
Personal and Sensitive Information
TBD
Considerations for Using the Data
Social Impact of Dataset
TBD
Discussion of Biases
TBD
Other Known Limitations
TBD
Additional Information
Dataset Curators
List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here.
Licensing Information
The UNER v1 is released under the terms of the Creative Commons Attribution-ShareAlike 4.0 International license
Citation Information
If you use this dataset, please cite the corresponding paper:
@inproceedings{
mayhew2024universal,
title={Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark},
author={Stephen Mayhew and Terra Blevins and Shuheng Liu and Marek Šuppa and Hila Gonen and Joseph Marvin Imperial and Börje F. Karlsson and Peiqin Lin and Nikola Ljubešić and LJ Miranda and Barbara Plank and Arij Riab and Yuval Pinter}
booktitle={Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)},
year={2024},
url={https://aclanthology.org/2024.naacl-long.243/}
}